Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  moimd Structured version   Visualization version   GIF version

Theorem moimd 28710
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by Thierry Arnoux, 25-Feb-2017.)
Hypothesis
Ref Expression
moimd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
moimd (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem moimd
StepHypRef Expression
1 moimd.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1842 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 moim 2507 . 2 (∀𝑥(𝜓𝜒) → (∃*𝑥𝜒 → ∃*𝑥𝜓))
42, 3syl 17 1 (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  ∃*wmo 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-mo 2463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator