Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > moimd | Structured version Visualization version GIF version |
Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by Thierry Arnoux, 25-Feb-2017.) |
Ref | Expression |
---|---|
moimd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
moimd | ⊢ (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moimd.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimiv 1842 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | moim 2507 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∃*𝑥𝜒 → ∃*𝑥𝜓)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-eu 2462 df-mo 2463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |