MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom2 Structured version   Visualization version   GIF version

Theorem modom2 8047
Description: Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
modom2 (∃*𝑥 𝑥𝐴𝐴 ≼ 1𝑜)
Distinct variable group:   𝑥,𝐴

Proof of Theorem modom2
StepHypRef Expression
1 modom 8046 . 2 (∃*𝑥 𝑥𝐴 ↔ {𝑥𝑥𝐴} ≼ 1𝑜)
2 abid2 2732 . . 3 {𝑥𝑥𝐴} = 𝐴
32breq1i 4590 . 2 ({𝑥𝑥𝐴} ≼ 1𝑜𝐴 ≼ 1𝑜)
41, 3bitri 263 1 (∃*𝑥 𝑥𝐴𝐴 ≼ 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wcel 1977  ∃*wmo 2459  {cab 2596   class class class wbr 4583  1𝑜c1o 7440  cdom 7839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator