MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2ile Structured version   Visualization version   GIF version

Theorem mod2ile 16929
Description: The weak direction of the modular law (e.g., pmod2iN 34153) that holds in any lattice. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
modle.b 𝐵 = (Base‘𝐾)
modle.l = (le‘𝐾)
modle.j = (join‘𝐾)
modle.m = (meet‘𝐾)
Assertion
Ref Expression
mod2ile ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑋 → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍))))

Proof of Theorem mod2ile
StepHypRef Expression
1 simpll 786 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝐾 ∈ Lat)
2 simplr3 1098 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑍𝐵)
3 simplr2 1097 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑌𝐵)
4 simplr1 1096 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑋𝐵)
52, 3, 43jca 1235 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍𝐵𝑌𝐵𝑋𝐵))
61, 5jca 553 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝐾 ∈ Lat ∧ (𝑍𝐵𝑌𝐵𝑋𝐵)))
7 simpr 476 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑍 𝑋)
8 modle.b . . . . 5 𝐵 = (Base‘𝐾)
9 modle.l . . . . 5 = (le‘𝐾)
10 modle.j . . . . 5 = (join‘𝐾)
11 modle.m . . . . 5 = (meet‘𝐾)
128, 9, 10, 11mod1ile 16928 . . . 4 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑌𝐵𝑋𝐵)) → (𝑍 𝑋 → (𝑍 (𝑌 𝑋)) ((𝑍 𝑌) 𝑋)))
136, 7, 12sylc 63 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍 (𝑌 𝑋)) ((𝑍 𝑌) 𝑋))
148, 11latmcom 16898 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
151, 4, 3, 14syl3anc 1318 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 𝑌) = (𝑌 𝑋))
1615oveq1d 6564 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) = ((𝑌 𝑋) 𝑍))
178, 11latmcl 16875 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
181, 3, 4, 17syl3anc 1318 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑌 𝑋) ∈ 𝐵)
198, 10latjcom 16882 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌 𝑋) ∈ 𝐵𝑍𝐵) → ((𝑌 𝑋) 𝑍) = (𝑍 (𝑌 𝑋)))
201, 18, 2, 19syl3anc 1318 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑌 𝑋) 𝑍) = (𝑍 (𝑌 𝑋)))
2116, 20eqtrd 2644 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑌 𝑋)))
228, 10latjcom 16882 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑍 𝑌))
231, 3, 2, 22syl3anc 1318 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑌 𝑍) = (𝑍 𝑌))
2423oveq2d 6565 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑌 𝑍)) = (𝑋 (𝑍 𝑌)))
258, 10latjcl 16874 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
261, 2, 3, 25syl3anc 1318 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍 𝑌) ∈ 𝐵)
278, 11latmcom 16898 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑍 𝑌) ∈ 𝐵) → (𝑋 (𝑍 𝑌)) = ((𝑍 𝑌) 𝑋))
281, 4, 26, 27syl3anc 1318 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑍 𝑌)) = ((𝑍 𝑌) 𝑋))
2924, 28eqtrd 2644 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑌 𝑍)) = ((𝑍 𝑌) 𝑋))
3013, 21, 293brtr4d 4615 . 2 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)))
3130ex 449 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑋 → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator