Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version |
Description: Formula-building rule for "at most one" quantifier (inference rule). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜓 ↔ 𝜒)) |
3 | 2 | mobidv 2479 | . 2 ⊢ (⊤ → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
4 | 3 | trud 1484 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ⊤wtru 1476 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-tru 1478 df-ex 1696 df-nf 1701 df-eu 2462 df-mo 2463 |
This theorem is referenced by: moanmo 2520 2moswap 2535 rmobiia 3109 rmov 3195 euxfr2 3358 rmoan 3373 2reu5lem2 3381 reuxfr2d 4817 dffun9 5832 funopab 5837 funcnv2 5871 funcnv 5872 fun2cnv 5874 fncnv 5876 imadif 5887 fnres 5921 ov3 6695 oprabex3 7048 brdom6disj 9235 grothprim 9535 axaddf 9845 axmulf 9846 reuxfr3d 28713 funcnvmptOLD 28850 funcnvmpt 28851 2rmoswap 39833 |
Copyright terms: Public domain | W3C validator |