Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mo | Structured version Visualization version GIF version |
Description: Equivalent definitions of "there exists at most one." (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 2-Dec-2018.) |
Ref | Expression |
---|---|
mo.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | mo2 2467 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
3 | 1 | mo3 2495 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
4 | 2, 3 | bitr3i 265 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 ∃wex 1695 Ⅎwnf 1699 [wsb 1867 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 |
This theorem is referenced by: bj-snsetex 32144 |
Copyright terms: Public domain | W3C validator |