MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfltpnf Structured version   Visualization version   GIF version

Theorem mnfltpnf 11836
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf -∞ < +∞

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2610 . . . 4 -∞ = -∞
2 eqid 2610 . . . 4 +∞ = +∞
3 olc 398 . . . 4 ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)))
41, 2, 3mp2an 704 . . 3 (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))
54orci 404 . 2 ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))
6 mnfxr 9975 . . 3 -∞ ∈ ℝ*
7 pnfxr 9971 . . 3 +∞ ∈ ℝ*
8 ltxr 11825 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))))
96, 7, 8mp2an 704 . 2 (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))
105, 9mpbir 220 1 -∞ < +∞
Colors of variables: wff setvar class
Syntax hints:  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cr 9814   < cltrr 9819  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958
This theorem is referenced by:  mnfltxr  11837  xrlttri  11848  xrlttr  11849  xltnegi  11921
  Copyright terms: Public domain W3C validator