Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mncn0 | Structured version Visualization version GIF version |
Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
Ref | Expression |
---|---|
mncn0 | ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnccoe 36727 | . 2 ⊢ (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1) | |
2 | coe0 23816 | . . . . . . 7 ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) | |
3 | 2 | fveq1i 6104 | . . . . . 6 ⊢ ((coeff‘0𝑝)‘(deg‘0𝑝)) = ((ℕ0 × {0})‘(deg‘0𝑝)) |
4 | dgr0 23822 | . . . . . . . 8 ⊢ (deg‘0𝑝) = 0 | |
5 | 0nn0 11184 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
6 | 4, 5 | eqeltri 2684 | . . . . . . 7 ⊢ (deg‘0𝑝) ∈ ℕ0 |
7 | c0ex 9913 | . . . . . . . 8 ⊢ 0 ∈ V | |
8 | 7 | fvconst2 6374 | . . . . . . 7 ⊢ ((deg‘0𝑝) ∈ ℕ0 → ((ℕ0 × {0})‘(deg‘0𝑝)) = 0) |
9 | 6, 8 | ax-mp 5 | . . . . . 6 ⊢ ((ℕ0 × {0})‘(deg‘0𝑝)) = 0 |
10 | 3, 9 | eqtri 2632 | . . . . 5 ⊢ ((coeff‘0𝑝)‘(deg‘0𝑝)) = 0 |
11 | 0ne1 10965 | . . . . 5 ⊢ 0 ≠ 1 | |
12 | 10, 11 | eqnetri 2852 | . . . 4 ⊢ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1 |
13 | fveq2 6103 | . . . . . 6 ⊢ (𝑃 = 0𝑝 → (coeff‘𝑃) = (coeff‘0𝑝)) | |
14 | fveq2 6103 | . . . . . 6 ⊢ (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝)) | |
15 | 13, 14 | fveq12d 6109 | . . . . 5 ⊢ (𝑃 = 0𝑝 → ((coeff‘𝑃)‘(deg‘𝑃)) = ((coeff‘0𝑝)‘(deg‘0𝑝))) |
16 | 15 | neeq1d 2841 | . . . 4 ⊢ (𝑃 = 0𝑝 → (((coeff‘𝑃)‘(deg‘𝑃)) ≠ 1 ↔ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1)) |
17 | 12, 16 | mpbiri 247 | . . 3 ⊢ (𝑃 = 0𝑝 → ((coeff‘𝑃)‘(deg‘𝑃)) ≠ 1) |
18 | 17 | necon2i 2816 | . 2 ⊢ (((coeff‘𝑃)‘(deg‘𝑃)) = 1 → 𝑃 ≠ 0𝑝) |
19 | 1, 18 | syl 17 | 1 ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 {csn 4125 × cxp 5036 ‘cfv 5804 0cc0 9815 1c1 9816 ℕ0cn0 11169 0𝑝c0p 23242 coeffccoe 23746 degcdgr 23747 Monic cmnc 36720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-rlim 14068 df-sum 14265 df-0p 23243 df-ply 23748 df-coe 23750 df-dgr 23751 df-mnc 36722 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |