MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirreu3 Structured version   Visualization version   GIF version

Theorem mirreu3 25349
Description: Existential uniqueness of the mirror point. Theorem 7.8 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirreu.p 𝑃 = (Base‘𝐺)
mirreu.d = (dist‘𝐺)
mirreu.i 𝐼 = (Itv‘𝐺)
mirreu.g (𝜑𝐺 ∈ TarskiG)
mirreu.a (𝜑𝐴𝑃)
mirreu.m (𝜑𝑀𝑃)
Assertion
Ref Expression
mirreu3 (𝜑 → ∃!𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)))
Distinct variable groups:   ,𝑏   𝐴,𝑏   𝐼,𝑏   𝑀,𝑏   𝑃,𝑏   𝜑,𝑏
Allowed substitution hint:   𝐺(𝑏)

Proof of Theorem mirreu3
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mirreu.a . . . . . 6 (𝜑𝐴𝑃)
21adantr 480 . . . . 5 ((𝜑𝐴 = 𝑀) → 𝐴𝑃)
3 eqidd 2611 . . . . 5 ((𝜑𝐴 = 𝑀) → (𝑀 𝐴) = (𝑀 𝐴))
4 simpr 476 . . . . . 6 ((𝜑𝐴 = 𝑀) → 𝐴 = 𝑀)
5 mirreu.p . . . . . . 7 𝑃 = (Base‘𝐺)
6 mirreu.d . . . . . . 7 = (dist‘𝐺)
7 mirreu.i . . . . . . 7 𝐼 = (Itv‘𝐺)
8 mirreu.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . . . . . 7 ((𝜑𝐴 = 𝑀) → 𝐺 ∈ TarskiG)
105, 6, 7, 9, 2, 2tgbtwntriv2 25182 . . . . . 6 ((𝜑𝐴 = 𝑀) → 𝐴 ∈ (𝐴𝐼𝐴))
114, 10eqeltrrd 2689 . . . . 5 ((𝜑𝐴 = 𝑀) → 𝑀 ∈ (𝐴𝐼𝐴))
12 oveq2 6557 . . . . . . . 8 (𝑏 = 𝐴 → (𝑀 𝑏) = (𝑀 𝐴))
1312eqeq1d 2612 . . . . . . 7 (𝑏 = 𝐴 → ((𝑀 𝑏) = (𝑀 𝐴) ↔ (𝑀 𝐴) = (𝑀 𝐴)))
14 oveq1 6556 . . . . . . . 8 (𝑏 = 𝐴 → (𝑏𝐼𝐴) = (𝐴𝐼𝐴))
1514eleq2d 2673 . . . . . . 7 (𝑏 = 𝐴 → (𝑀 ∈ (𝑏𝐼𝐴) ↔ 𝑀 ∈ (𝐴𝐼𝐴)))
1613, 15anbi12d 743 . . . . . 6 (𝑏 = 𝐴 → (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ↔ ((𝑀 𝐴) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝐴𝐼𝐴))))
1716rspcev 3282 . . . . 5 ((𝐴𝑃 ∧ ((𝑀 𝐴) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝐴𝐼𝐴))) → ∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)))
182, 3, 11, 17syl12anc 1316 . . . 4 ((𝜑𝐴 = 𝑀) → ∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)))
198ad3antrrr 762 . . . . . . . 8 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝐺 ∈ TarskiG)
20 mirreu.m . . . . . . . . 9 (𝜑𝑀𝑃)
2120ad3antrrr 762 . . . . . . . 8 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀𝑃)
22 simplrl 796 . . . . . . . 8 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑏𝑃)
23 simprll 798 . . . . . . . . 9 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → (𝑀 𝑏) = (𝑀 𝐴))
24 simpllr 795 . . . . . . . . . 10 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝐴 = 𝑀)
2524oveq2d 6565 . . . . . . . . 9 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → (𝑀 𝐴) = (𝑀 𝑀))
2623, 25eqtrd 2644 . . . . . . . 8 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → (𝑀 𝑏) = (𝑀 𝑀))
275, 6, 7, 19, 21, 22, 21, 26axtgcgrid 25162 . . . . . . 7 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀 = 𝑏)
28 simplrr 797 . . . . . . . 8 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑐𝑃)
29 simprrl 800 . . . . . . . . 9 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → (𝑀 𝑐) = (𝑀 𝐴))
3029, 25eqtrd 2644 . . . . . . . 8 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → (𝑀 𝑐) = (𝑀 𝑀))
315, 6, 7, 19, 21, 28, 21, 30axtgcgrid 25162 . . . . . . 7 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀 = 𝑐)
3227, 31eqtr3d 2646 . . . . . 6 ((((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑏 = 𝑐)
3332ex 449 . . . . 5 (((𝜑𝐴 = 𝑀) ∧ (𝑏𝑃𝑐𝑃)) → ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐))
3433ralrimivva 2954 . . . 4 ((𝜑𝐴 = 𝑀) → ∀𝑏𝑃𝑐𝑃 ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐))
3518, 34jca 553 . . 3 ((𝜑𝐴 = 𝑀) → (∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ∀𝑏𝑃𝑐𝑃 ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐)))
368adantr 480 . . . . . 6 ((𝜑𝐴𝑀) → 𝐺 ∈ TarskiG)
371adantr 480 . . . . . 6 ((𝜑𝐴𝑀) → 𝐴𝑃)
3820adantr 480 . . . . . 6 ((𝜑𝐴𝑀) → 𝑀𝑃)
395, 6, 7, 36, 37, 38, 38, 37axtgsegcon 25163 . . . . 5 ((𝜑𝐴𝑀) → ∃𝑏𝑃 (𝑀 ∈ (𝐴𝐼𝑏) ∧ (𝑀 𝑏) = (𝑀 𝐴)))
40 ancom 465 . . . . . . . 8 ((𝑀 ∈ (𝐴𝐼𝑏) ∧ (𝑀 𝑏) = (𝑀 𝐴)) ↔ ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝐴𝐼𝑏)))
418adantr 480 . . . . . . . . . 10 ((𝜑𝑏𝑃) → 𝐺 ∈ TarskiG)
421adantr 480 . . . . . . . . . 10 ((𝜑𝑏𝑃) → 𝐴𝑃)
4320adantr 480 . . . . . . . . . 10 ((𝜑𝑏𝑃) → 𝑀𝑃)
44 simpr 476 . . . . . . . . . 10 ((𝜑𝑏𝑃) → 𝑏𝑃)
455, 6, 7, 41, 42, 43, 44tgbtwncomb 25184 . . . . . . . . 9 ((𝜑𝑏𝑃) → (𝑀 ∈ (𝐴𝐼𝑏) ↔ 𝑀 ∈ (𝑏𝐼𝐴)))
4645anbi2d 736 . . . . . . . 8 ((𝜑𝑏𝑃) → (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝐴𝐼𝑏)) ↔ ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴))))
4740, 46syl5bb 271 . . . . . . 7 ((𝜑𝑏𝑃) → ((𝑀 ∈ (𝐴𝐼𝑏) ∧ (𝑀 𝑏) = (𝑀 𝐴)) ↔ ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴))))
4847rexbidva 3031 . . . . . 6 (𝜑 → (∃𝑏𝑃 (𝑀 ∈ (𝐴𝐼𝑏) ∧ (𝑀 𝑏) = (𝑀 𝐴)) ↔ ∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴))))
4948adantr 480 . . . . 5 ((𝜑𝐴𝑀) → (∃𝑏𝑃 (𝑀 ∈ (𝐴𝐼𝑏) ∧ (𝑀 𝑏) = (𝑀 𝐴)) ↔ ∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴))))
5039, 49mpbid 221 . . . 4 ((𝜑𝐴𝑀) → ∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)))
518ad3antrrr 762 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝐺 ∈ TarskiG)
5220ad3antrrr 762 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀𝑃)
531ad3antrrr 762 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝐴𝑃)
54 simplrl 796 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑏𝑃)
55 simplrr 797 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑐𝑃)
56 simpllr 795 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝐴𝑀)
57 simprlr 799 . . . . . . . 8 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀 ∈ (𝑏𝐼𝐴))
585, 6, 7, 51, 54, 52, 53, 57tgbtwncom 25183 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀 ∈ (𝐴𝐼𝑏))
59 simprrr 801 . . . . . . . 8 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀 ∈ (𝑐𝐼𝐴))
605, 6, 7, 51, 55, 52, 53, 59tgbtwncom 25183 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑀 ∈ (𝐴𝐼𝑐))
61 simprll 798 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → (𝑀 𝑏) = (𝑀 𝐴))
62 simprrl 800 . . . . . . 7 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → (𝑀 𝑐) = (𝑀 𝐴))
635, 6, 7, 51, 52, 52, 53, 53, 54, 55, 56, 58, 60, 61, 62tgsegconeq 25181 . . . . . 6 ((((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) ∧ (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴)))) → 𝑏 = 𝑐)
6463ex 449 . . . . 5 (((𝜑𝐴𝑀) ∧ (𝑏𝑃𝑐𝑃)) → ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐))
6564ralrimivva 2954 . . . 4 ((𝜑𝐴𝑀) → ∀𝑏𝑃𝑐𝑃 ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐))
6650, 65jca 553 . . 3 ((𝜑𝐴𝑀) → (∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ∀𝑏𝑃𝑐𝑃 ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐)))
6735, 66pm2.61dane 2869 . 2 (𝜑 → (∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ∀𝑏𝑃𝑐𝑃 ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐)))
68 oveq2 6557 . . . . 5 (𝑏 = 𝑐 → (𝑀 𝑏) = (𝑀 𝑐))
6968eqeq1d 2612 . . . 4 (𝑏 = 𝑐 → ((𝑀 𝑏) = (𝑀 𝐴) ↔ (𝑀 𝑐) = (𝑀 𝐴)))
70 oveq1 6556 . . . . 5 (𝑏 = 𝑐 → (𝑏𝐼𝐴) = (𝑐𝐼𝐴))
7170eleq2d 2673 . . . 4 (𝑏 = 𝑐 → (𝑀 ∈ (𝑏𝐼𝐴) ↔ 𝑀 ∈ (𝑐𝐼𝐴)))
7269, 71anbi12d 743 . . 3 (𝑏 = 𝑐 → (((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ↔ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))))
7372reu4 3367 . 2 (∃!𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ↔ (∃𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ∀𝑏𝑃𝑐𝑃 ((((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)) ∧ ((𝑀 𝑐) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑐𝐼𝐴))) → 𝑏 = 𝑐)))
7467, 73sylibr 223 1 (𝜑 → ∃!𝑏𝑃 ((𝑀 𝑏) = (𝑀 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152
This theorem is referenced by:  mircgr  25352  mirbtwn  25353  ismir  25354  mirf  25355  mireq  25360
  Copyright terms: Public domain W3C validator