MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem6 Structured version   Visualization version   GIF version

Theorem minveclem6 23013
Description: Lemma for minvec 23015. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.d . . . . . . . 8 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
21oveqi 6562 . . . . . . 7 (𝐴𝐷𝑥) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥)
3 minvec.a . . . . . . . . 9 (𝜑𝐴𝑋)
43adantr 480 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝐴𝑋)
5 minvec.y . . . . . . . . . 10 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.x . . . . . . . . . . 11 𝑋 = (Base‘𝑈)
7 eqid 2610 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
86, 7lssss 18758 . . . . . . . . . 10 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
95, 8syl 17 . . . . . . . . 9 (𝜑𝑌𝑋)
109sselda 3568 . . . . . . . 8 ((𝜑𝑥𝑌) → 𝑥𝑋)
114, 10ovresd 6699 . . . . . . 7 ((𝜑𝑥𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑥) = (𝐴(dist‘𝑈)𝑥))
122, 11syl5eq 2656 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝐴(dist‘𝑈)𝑥))
13 minvec.u . . . . . . . . 9 (𝜑𝑈 ∈ ℂPreHil)
14 cphngp 22781 . . . . . . . . 9 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
1513, 14syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmGrp)
1615adantr 480 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmGrp)
17 minvec.n . . . . . . . 8 𝑁 = (norm‘𝑈)
18 minvec.m . . . . . . . 8 = (-g𝑈)
19 eqid 2610 . . . . . . . 8 (dist‘𝑈) = (dist‘𝑈)
2017, 6, 18, 19ngpds 22218 . . . . . . 7 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2116, 4, 10, 20syl3anc 1318 . . . . . 6 ((𝜑𝑥𝑌) → (𝐴(dist‘𝑈)𝑥) = (𝑁‘(𝐴 𝑥)))
2212, 21eqtrd 2644 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴 𝑥)))
2322oveq1d 6564 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴 𝑥))↑2))
24 minvec.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
25 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
26 minvec.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑈)
27 minvec.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
286, 18, 17, 13, 5, 25, 3, 26, 27minveclem1 23003 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
3029simp1d 1066 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
3129simp2d 1067 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
32 0red 9920 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3329simp3d 1068 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
34 breq1 4586 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3534ralbidv 2969 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3635rspcev 3282 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3732, 33, 36syl2anc 691 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
38 infrecl 10882 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3930, 31, 37, 38syl3anc 1318 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
4024, 39syl5eqel 2692 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
4140resqcld 12897 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
4241recnd 9947 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4342addid1d 10115 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4423, 43breq12d 4596 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
45 cphlmod 22782 . . . . . . . 8 (𝑈 ∈ ℂPreHil → 𝑈 ∈ LMod)
4613, 45syl 17 . . . . . . 7 (𝜑𝑈 ∈ LMod)
4746adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ LMod)
486, 18lmodvsubcl 18731 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐴𝑋𝑥𝑋) → (𝐴 𝑥) ∈ 𝑋)
4947, 4, 10, 48syl3anc 1318 . . . . 5 ((𝜑𝑥𝑌) → (𝐴 𝑥) ∈ 𝑋)
506, 17nmcl 22230 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
5116, 49, 50syl2anc 691 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴 𝑥)) ∈ ℝ)
526, 17nmge0 22231 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐴 𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴 𝑥)))
5316, 49, 52syl2anc 691 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴 𝑥)))
54 infregelb 10884 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5530, 31, 37, 32, 54syl31anc 1321 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5633, 55mpbird 246 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5756, 24syl6breqr 4625 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5851, 40, 53, 57le2sqd 12906 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴 𝑥))↑2) ≤ (𝑆↑2)))
5924breq2i 4591 . . . 4 ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ))
60 infregelb 10884 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴 𝑥)) ∈ ℝ) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6130, 31, 37, 51, 60syl31anc 1321 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6259, 61syl5bb 271 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6344, 58, 623bitr2d 295 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤))
6427raleqi 3119 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤)
65 fvex 6113 . . . . 5 (𝑁‘(𝐴 𝑦)) ∈ V
6665rgenw 2908 . . . 4 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
67 eqid 2610 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
68 breq2 4587 . . . . 5 (𝑤 = (𝑁‘(𝐴 𝑦)) → ((𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
6967, 68ralrnmpt 6276 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
7066, 69ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7164, 70bitri 263 . 2 (∀𝑤𝑅 (𝑁‘(𝐴 𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
7263, 71syl6bb 275 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039  cres 5040  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815   + caddc 9818   < clt 9953  cle 9954  2c2 10947  cexp 12722  Basecbs 15695  s cress 15696  distcds 15777  TopOpenctopn 15905  -gcsg 17247  LModclmod 18686  LSubSpclss 18753  normcnm 22191  NrmGrpcngp 22192  ℂPreHilccph 22774  CMetSpccms 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-seq 12664  df-exp 12723  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-lmod 18688  df-lss 18754  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nlm 22201  df-cph 22776
This theorem is referenced by:  minveclem7  23014
  Copyright terms: Public domain W3C validator