Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minimp-pm2.43 Structured version   Visualization version   GIF version

Theorem minimp-pm2.43 1556
 Description: Derivation of pm2.43 54 (also called "hilbert" or W) from ax-mp 5 and minimp 1551. It uses the classical derivation from ax-1 6 and ax-2 7 written DD22D21 in D-notation (see head comment for an explanation) and shortens the proof using mp2 9 (which only requires ax-mp 5). (Contributed by BJ, 31-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
minimp-pm2.43 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem minimp-pm2.43
StepHypRef Expression
1 minimp-ax2 1555 . 2 ((𝜑 → (𝜑𝜓)) → ((𝜑𝜑) → (𝜑𝜓)))
2 minimp-ax1 1553 . . 3 (𝜑 → ((𝜑𝜓) → 𝜑))
3 minimp-ax2 1555 . . 3 ((𝜑 → ((𝜑𝜓) → 𝜑)) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜑)))
42, 3ax-mp 5 . 2 ((𝜑 → (𝜑𝜓)) → (𝜑𝜑))
5 minimp-ax2 1555 . 2 (((𝜑 → (𝜑𝜓)) → ((𝜑𝜑) → (𝜑𝜓))) → (((𝜑 → (𝜑𝜓)) → (𝜑𝜑)) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))))
61, 4, 5mp2 9 1 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator