MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midex Structured version   Visualization version   GIF version

Theorem midex 25429
Description: Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideu.3 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
midex (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥

Proof of Theorem midex
Dummy variables 𝑝 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mideu.1 . . . 4 (𝜑𝐴𝑃)
21adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
3 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
4 colperpex.d . . . . 5 = (dist‘𝐺)
5 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
6 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
7 mideu.s . . . . 5 𝑆 = (pInvG‘𝐺)
8 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
10 eqid 2610 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
113, 4, 5, 6, 7, 9, 2, 10mircinv 25363 . . . 4 ((𝜑𝐴 = 𝐵) → ((𝑆𝐴)‘𝐴) = 𝐴)
12 simpr 476 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
1311, 12eqtr2d 2645 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = ((𝑆𝐴)‘𝐴))
14 fveq2 6103 . . . . . 6 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
1514fveq1d 6105 . . . . 5 (𝑥 = 𝐴 → ((𝑆𝑥)‘𝐴) = ((𝑆𝐴)‘𝐴))
1615eqeq2d 2620 . . . 4 (𝑥 = 𝐴 → (𝐵 = ((𝑆𝑥)‘𝐴) ↔ 𝐵 = ((𝑆𝐴)‘𝐴)))
1716rspcev 3282 . . 3 ((𝐴𝑃𝐵 = ((𝑆𝐴)‘𝐴)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
182, 13, 17syl2anc 691 . 2 ((𝜑𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
198adantr 480 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
2019ad2antrr 758 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
2120ad4antr 764 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐺 ∈ TarskiG)
221adantr 480 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐴𝑃)
2322ad2antrr 758 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
2423ad4antr 764 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝑃)
25 mideu.2 . . . . . . . . 9 (𝜑𝐵𝑃)
2625adantr 480 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐵𝑃)
2726ad2antrr 758 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
2827ad4antr 764 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑃)
29 simpr 476 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐴𝐵)
3029ad2antrr 758 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝐵)
3130ad4antr 764 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝐵)
32 simplr 788 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑞𝑃)
3332ad4antr 764 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑞𝑃)
34 simp-4r 803 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑝𝑃)
35 simpllr 795 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡𝑃)
36 simp-5r 805 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
376, 21, 36perpln1 25405 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
383, 5, 6, 21, 24, 28, 31tgelrnln 25325 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
393, 4, 5, 6, 21, 37, 38, 36perpcom 25408 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝑞))
403, 5, 6, 21, 28, 33, 37tglnne 25323 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑞)
413, 5, 6, 21, 28, 33, 40tglinecom 25330 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) = (𝑞𝐿𝐵))
4239, 41breqtrd 4609 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑞𝐿𝐵))
43 simplr 788 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
4443simpld 474 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
456, 21, 44perpln1 25405 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
463, 4, 5, 6, 21, 45, 38, 44perpcom 25408 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑝))
4731neneqd 2787 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ¬ 𝐴 = 𝐵)
4843simprd 478 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
4948simpld 474 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5049orcomd 402 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
5150ord 391 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
5247, 51mpd 15 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝐴𝐿𝐵))
5348simprd 478 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝑞𝐼𝑝))
54 simpr 476 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞))
553, 4, 5, 6, 21, 7, 24, 28, 31, 33, 34, 35, 42, 46, 52, 53, 54mideulem 25428 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
5620ad4antr 764 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐺 ∈ TarskiG)
5756adantr 480 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐺 ∈ TarskiG)
58 simprl 790 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝑥𝑃)
59 eqid 2610 . . . . . . . 8 (𝑆𝑥) = (𝑆𝑥)
6027ad4antr 764 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝑃)
6160adantr 480 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵𝑃)
62 simprr 792 . . . . . . . . 9 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐴 = ((𝑆𝑥)‘𝐵))
6362eqcomd 2616 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐵) = 𝐴)
643, 4, 5, 6, 7, 57, 58, 59, 61, 63mircom 25358 . . . . . . 7 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐴) = 𝐵)
6564eqcomd 2616 . . . . . 6 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵 = ((𝑆𝑥)‘𝐴))
6623ad4antr 764 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑃)
6730ad4antr 764 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝐵)
6867necomd 2837 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝐴)
69 simp-4r 803 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑝𝑃)
7032ad4antr 764 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑞𝑃)
71 simpllr 795 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡𝑃)
72 simplr 788 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
7372simpld 474 . . . . . . . . . . . . 13 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
746, 56, 73perpln1 25405 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
753, 5, 6, 56, 66, 69, 74tglnne 25323 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑝)
763, 5, 6, 56, 66, 69, 75tglinecom 25330 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) = (𝑝𝐿𝐴))
7776eqcomd 2616 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴) = (𝐴𝐿𝑝))
7877, 74eqeltrd 2688 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴) ∈ ran 𝐿)
793, 5, 6, 56, 60, 66, 68tgelrnln 25325 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴) ∈ ran 𝐿)
803, 5, 6, 56, 66, 60, 67tglinecom 25330 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
8173, 76, 803brtr3d 4614 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝐴))
823, 4, 5, 6, 56, 78, 79, 81perpcom 25408 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑝𝐿𝐴))
83 simp-5r 805 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
846, 56, 83perpln1 25405 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
8583, 80breqtrd 4609 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
863, 4, 5, 6, 56, 84, 79, 85perpcom 25408 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝑞))
8767neneqd 2787 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ¬ 𝐴 = 𝐵)
8872simprd 478 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
8988simpld 474 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9089orcomd 402 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
9190ord 391 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
9287, 91mpd 15 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐴𝐿𝐵))
9392, 80eleqtrd 2690 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐵𝐿𝐴))
9488simprd 478 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑞𝐼𝑝))
953, 4, 5, 56, 70, 71, 69, 94tgbtwncom 25183 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑝𝐼𝑞))
96 simpr 476 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝))
973, 4, 5, 6, 56, 7, 60, 66, 68, 69, 70, 71, 82, 86, 93, 95, 96mideulem 25428 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐴 = ((𝑆𝑥)‘𝐵))
9865, 97reximddv 3001 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
99 eqid 2610 . . . . . 6 (≤G‘𝐺) = (≤G‘𝐺)
10020ad3antrrr 762 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐺 ∈ TarskiG)
10123ad3antrrr 762 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐴𝑃)
102 simpllr 795 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑝𝑃)
10327ad3antrrr 762 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐵𝑃)
10432ad3antrrr 762 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑞𝑃)
1053, 4, 5, 99, 100, 101, 102, 103, 104legtrid 25286 . . . . 5 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ((𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞) ∨ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)))
10655, 98, 105mpjaodan 823 . . . 4 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
107 mideu.3 . . . . . . . 8 (𝜑𝐺DimTarskiG≥2)
108107adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐺DimTarskiG≥2)
109108ad2antrr 758 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
1103, 4, 5, 6, 20, 23, 27, 32, 30, 109colperpex 25425 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
111 r19.42v 3073 . . . . . 6 (∃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
112111rexbii 3023 . . . . 5 (∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
113110, 112sylibr 223 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
114106, 113r19.29vva 3062 . . 3 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
11529necomd 2837 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝐴)
1163, 4, 5, 6, 19, 26, 22, 22, 115, 108colperpex 25425 . . . 4 ((𝜑𝐴𝐵) → ∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))))
117 simprl 790 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
1183, 5, 6, 19, 22, 26, 29tglinecom 25330 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
119118adantr 480 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
120117, 119breqtrrd 4611 . . . . . 6 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
121120ex 449 . . . . 5 ((𝜑𝐴𝐵) → (((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
122121reximdv 2999 . . . 4 ((𝜑𝐴𝐵) → (∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
123116, 122mpd 15 . . 3 ((𝜑𝐴𝐵) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
124114, 123r19.29a 3060 . 2 ((𝜑𝐴𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
12518, 124pm2.61dane 2869 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  2c2 10947  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  DimTarskiGcstrkgld 25133  Itvcitv 25135  LineGclng 25136  ≤Gcleg 25277  pInvGcmir 25347  ⟂Gcperpg 25390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkgld 25151  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-mir 25348  df-rag 25389  df-perpg 25391
This theorem is referenced by:  mideu  25430  opphllem5  25443  opphl  25446
  Copyright terms: Public domain W3C validator