Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmvlin Structured version   Visualization version   GIF version

Theorem mhmvlin 20022
 Description: Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mhmvlin.b 𝐵 = (Base‘𝑀)
mhmvlin.p + = (+g𝑀)
mhmvlin.q = (+g𝑁)
Assertion
Ref Expression
mhmvlin ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹 ∘ (𝑋𝑓 + 𝑌)) = ((𝐹𝑋) ∘𝑓 (𝐹𝑌)))

Proof of Theorem mhmvlin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1057 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2 elmapi 7765 . . . . . 6 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝑋:𝐼𝐵)
323ad2ant2 1076 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑋:𝐼𝐵)
43ffvelrnda 6267 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ 𝐵)
5 elmapi 7765 . . . . . 6 (𝑌 ∈ (𝐵𝑚 𝐼) → 𝑌:𝐼𝐵)
653ad2ant3 1077 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑌:𝐼𝐵)
76ffvelrnda 6267 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝑌𝑦) ∈ 𝐵)
8 mhmvlin.b . . . . 5 𝐵 = (Base‘𝑀)
9 mhmvlin.p . . . . 5 + = (+g𝑀)
10 mhmvlin.q . . . . 5 = (+g𝑁)
118, 9, 10mhmlin 17165 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
121, 4, 7, 11syl3anc 1318 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
1312mpteq2dva 4672 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
14 mhmrcl1 17161 . . . . . 6 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514adantr 480 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
16153ad2antl1 1216 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
178, 9mndcl 17124 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
1816, 4, 7, 17syl3anc 1318 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
19 elmapex 7764 . . . . . 6 (𝑌 ∈ (𝐵𝑚 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
2019simprd 478 . . . . 5 (𝑌 ∈ (𝐵𝑚 𝐼) → 𝐼 ∈ V)
21203ad2ant3 1077 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝐼 ∈ V)
223feqmptd 6159 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
236feqmptd 6159 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
2421, 4, 7, 22, 23offval2 6812 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝑋𝑓 + 𝑌) = (𝑦𝐼 ↦ ((𝑋𝑦) + (𝑌𝑦))))
25 eqid 2610 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
268, 25mhmf 17163 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:𝐵⟶(Base‘𝑁))
27263ad2ant1 1075 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝐹:𝐵⟶(Base‘𝑁))
2827feqmptd 6159 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝐹 = (𝑧𝐵 ↦ (𝐹𝑧)))
29 fveq2 6103 . . 3 (𝑧 = ((𝑋𝑦) + (𝑌𝑦)) → (𝐹𝑧) = (𝐹‘((𝑋𝑦) + (𝑌𝑦))))
3018, 24, 28, 29fmptco 6303 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹 ∘ (𝑋𝑓 + 𝑌)) = (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))))
31 fvex 6113 . . . 4 (𝐹‘(𝑋𝑦)) ∈ V
3231a1i 11 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑋𝑦)) ∈ V)
33 fvex 6113 . . . 4 (𝐹‘(𝑌𝑦)) ∈ V
3433a1i 11 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑌𝑦)) ∈ V)
35 fcompt 6306 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑋:𝐼𝐵) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
3627, 3, 35syl2anc 691 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
37 fcompt 6306 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑌:𝐼𝐵) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3827, 6, 37syl2anc 691 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3921, 32, 34, 36, 38offval2 6812 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → ((𝐹𝑋) ∘𝑓 (𝐹𝑌)) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
4013, 30, 393eqtr4d 2654 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝐹 ∘ (𝑋𝑓 + 𝑌)) = ((𝐹𝑋) ∘𝑓 (𝐹𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ↦ cmpt 4643   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   ↑𝑚 cmap 7744  Basecbs 15695  +gcplusg 15768  Mndcmnd 17117   MndHom cmhm 17156 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-1st 7059  df-2nd 7060  df-map 7746  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158 This theorem is referenced by:  mendring  36781
 Copyright terms: Public domain W3C validator