MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metres Structured version   Visualization version   GIF version

Theorem metres 21980
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))

Proof of Theorem metres
StepHypRef Expression
1 metf 21945 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
2 fdm 5964 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ → dom 𝐷 = (𝑋 × 𝑋))
3 metreslem 21977 . . 3 (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
41, 2, 33syl 18 . 2 (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
5 inss1 3795 . . 3 (𝑋𝑅) ⊆ 𝑋
6 metres2 21978 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑅) ⊆ 𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (Met‘(𝑋𝑅)))
75, 6mpan2 703 . 2 (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))) ∈ (Met‘(𝑋𝑅)))
84, 7eqeltrd 2688 1 (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cin 3539  wss 3540   × cxp 5036  dom cdm 5038  cres 5040  wf 5800  cfv 5804  cr 9814  Metcme 19553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-i2m1 9883
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-xadd 11823  df-xmet 19560  df-met 19561
This theorem is referenced by:  ressms  22141
  Copyright terms: Public domain W3C validator