Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrm Structured version   Visualization version   GIF version

Theorem metnrm 22473
 Description: A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013.) (Revised by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metnrm.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metnrm (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm)

Proof of Theorem metnrm
Dummy variables 𝑡 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metnrm.j . . 3 𝐽 = (MetOpen‘𝐷)
21mopntop 22055 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
3 eqid 2610 . . . . 5 (𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < )) = (𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))
4 simp1 1054 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → 𝐷 ∈ (∞Met‘𝑋))
5 simp2l 1080 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → 𝑥 ∈ (Clsd‘𝐽))
6 simp2r 1081 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → 𝑦 ∈ (Clsd‘𝐽))
7 simp3 1056 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) = ∅)
8 eqid 2610 . . . . 5 𝑠𝑦 (𝑠(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠)) / 2)) = 𝑠𝑦 (𝑠(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑥 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑠)) / 2))
9 eqid 2610 . . . . 5 (𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < )) = (𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))
10 eqid 2610 . . . . 5 𝑡𝑥 (𝑡(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡)) / 2)) = 𝑡𝑥 (𝑡(ball‘𝐷)(if(1 ≤ ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡), 1, ((𝑢𝑋 ↦ inf(ran (𝑣𝑦 ↦ (𝑢𝐷𝑣)), ℝ*, < ))‘𝑡)) / 2))
113, 1, 4, 5, 6, 7, 8, 9, 10metnrmlem3 22472 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽)) ∧ (𝑥𝑦) = ∅) → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))
12113expia 1259 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ (Clsd‘𝐽) ∧ 𝑦 ∈ (Clsd‘𝐽))) → ((𝑥𝑦) = ∅ → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅)))
1312ralrimivva 2954 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ (Clsd‘𝐽)∀𝑦 ∈ (Clsd‘𝐽)((𝑥𝑦) = ∅ → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅)))
14 isnrm3 20973 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ (Clsd‘𝐽)∀𝑦 ∈ (Clsd‘𝐽)((𝑥𝑦) = ∅ → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))))
152, 13, 14sylanbrc 695 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  ifcif 4036  ∪ ciun 4455   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039  ‘cfv 5804  (class class class)co 6549  infcinf 8230  1c1 9816  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   / cdiv 10563  2c2 10947  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Topctop 20517  Clsdccld 20630  Nrmcnrm 20924 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-ec 7631  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nrm 20931 This theorem is referenced by:  metreg  22474
 Copyright terms: Public domain W3C validator