Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnpi2 Structured version   Visualization version   GIF version

Theorem metcnpi2 22160
 Description: Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 22157. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnpi2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦

Proof of Theorem metcnpi2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
2 simpll 786 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐶 ∈ (∞Met‘𝑋))
3 simplr 788 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐷 ∈ (∞Met‘𝑌))
4 eqid 2610 . . . . . . . . 9 𝐽 = 𝐽
54cnprcl 20859 . . . . . . . 8 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 𝐽)
65adantl 481 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 𝐽)
7 metcn.2 . . . . . . . . 9 𝐽 = (MetOpen‘𝐶)
87mopnuni 22056 . . . . . . . 8 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
98ad2antrr 758 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
106, 9eleqtrrd 2691 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
11 metcn.4 . . . . . . 7 𝐾 = (MetOpen‘𝐷)
127, 11metcnp2 22157 . . . . . 6 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧))))
132, 3, 10, 12syl3anc 1318 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧))))
141, 13mpbid 221 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧)))
1514simprd 478 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧))
16 breq2 4587 . . . . . 6 (𝑧 = 𝐴 → (((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧 ↔ ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
1716imbi2d 329 . . . . 5 (𝑧 = 𝐴 → (((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧) ↔ ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴)))
1817rexralbidv 3040 . . . 4 (𝑧 = 𝐴 → (∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧) ↔ ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴)))
1918rspccv 3279 . . 3 (∀𝑧 ∈ ℝ+𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝑧) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴)))
2015, 19syl 17 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐴 ∈ ℝ+ → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴)))
2120impr 647 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  ∪ cuni 4372   class class class wbr 4583  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   < clt 9953  ℝ+crp 11708  ∞Metcxmt 19552  MetOpencmopn 19557   CnP ccnp 20839 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cnp 20842 This theorem is referenced by:  metcnpi3  22161  ftc1lem6  23608  ftc1cnnc  32654
 Copyright terms: Public domain W3C validator