Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld2 Structured version   Visualization version   GIF version

Theorem metcld2 22913
 Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcld2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) ⊆ 𝑆))

Proof of Theorem metcld2
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcld.2 . . 3 𝐽 = (MetOpen‘𝐷)
21metcld 22912 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆)))
3 19.23v 1889 . . . . 5 (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆))
4 vex 3176 . . . . . . . 8 𝑥 ∈ V
54elima2 5391 . . . . . . 7 (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝑆𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥))
6 id 22 . . . . . . . . . . 11 (𝑆𝑋𝑆𝑋)
7 elfvdm 6130 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8 ssexg 4732 . . . . . . . . . . 11 ((𝑆𝑋𝑋 ∈ dom ∞Met) → 𝑆 ∈ V)
96, 7, 8syl2anr 494 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ V)
10 nnex 10903 . . . . . . . . . 10 ℕ ∈ V
11 elmapg 7757 . . . . . . . . . 10 ((𝑆 ∈ V ∧ ℕ ∈ V) → (𝑓 ∈ (𝑆𝑚 ℕ) ↔ 𝑓:ℕ⟶𝑆))
129, 10, 11sylancl 693 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑓 ∈ (𝑆𝑚 ℕ) ↔ 𝑓:ℕ⟶𝑆))
1312anbi1d 737 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((𝑓 ∈ (𝑆𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
1413exbidv 1837 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓 ∈ (𝑆𝑚 ℕ) ∧ 𝑓(⇝𝑡𝐽)𝑥) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
155, 14syl5rbb 272 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) ↔ 𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ))))
1615imbi1d 330 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) → 𝑥𝑆)))
173, 16syl5bb 271 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) → 𝑥𝑆)))
1817albidv 1836 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) → 𝑥𝑆)))
19 dfss2 3557 . . 3 (((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) → 𝑥𝑆))
2018, 19syl6bbr 277 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) ⊆ 𝑆))
212, 20bitrd 267 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((⇝𝑡𝐽) “ (𝑆𝑚 ℕ)) ⊆ 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583  dom cdm 5038   “ cima 5041  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℕcn 10897  ∞Metcxmt 19552  MetOpencmopn 19557  Clsdccld 20630  ⇝𝑡clm 20840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-lm 20843  df-1stc 21052 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator