Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mercolem2 Structured version   Visualization version   GIF version

Theorem mercolem2 1654
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1652. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mercolem2 (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))

Proof of Theorem mercolem2
StepHypRef Expression
1 merco2 1652 . 2 (((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑))))
2 merco2 1652 . . . 4 (((𝜑𝜑) → ((⊥ → 𝜑) → (𝜑𝜓))) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))))
3 merco2 1652 . . . . . . . 8 (((𝜑𝜓) → ((⊥ → 𝜑) → ⊥)) → ((⊥ → 𝜑) → (𝜒 → (𝜃𝜑))))
4 merco2 1652 . . . . . . . 8 ((((𝜑𝜓) → ((⊥ → 𝜑) → ⊥)) → ((⊥ → 𝜑) → (𝜒 → (𝜃𝜑)))) → (((𝜒 → (𝜃𝜑)) → (𝜑𝜓)) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → (𝜑𝜓)))))
53, 4ax-mp 5 . . . . . . 7 (((𝜒 → (𝜃𝜑)) → (𝜑𝜓)) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → (𝜑𝜓))))
6 merco2 1652 . . . . . . 7 ((((𝜒 → (𝜃𝜑)) → (𝜑𝜓)) → ((⊥ → 𝜑) → ((⊥ → 𝜑) → (𝜑𝜓)))) → ((((⊥ → 𝜑) → (𝜑𝜓)) → (𝜒 → (𝜃𝜑))) → ((⊥ → 𝜑) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))))))
75, 6ax-mp 5 . . . . . 6 ((((⊥ → 𝜑) → (𝜑𝜓)) → (𝜒 → (𝜃𝜑))) → ((⊥ → 𝜑) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))))
8 merco2 1652 . . . . . 6 (((((⊥ → 𝜑) → (𝜑𝜓)) → (𝜒 → (𝜃𝜑))) → ((⊥ → 𝜑) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))))) → (((((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))) → ((⊥ → 𝜑) → (𝜑𝜓))) → ((⊥ → 𝜑) → ((𝜑𝜑) → ((⊥ → 𝜑) → (𝜑𝜓))))))
97, 8ax-mp 5 . . . . 5 (((((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))) → ((⊥ → 𝜑) → (𝜑𝜓))) → ((⊥ → 𝜑) → ((𝜑𝜑) → ((⊥ → 𝜑) → (𝜑𝜓)))))
10 merco2 1652 . . . . 5 ((((((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))) → ((⊥ → 𝜑) → (𝜑𝜓))) → ((⊥ → 𝜑) → ((𝜑𝜑) → ((⊥ → 𝜑) → (𝜑𝜓))))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → (𝜑𝜓))) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))))))
119, 10ax-mp 5 . . . 4 ((((𝜑𝜑) → ((⊥ → 𝜑) → (𝜑𝜓))) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))))))
122, 11ax-mp 5 . . 3 ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))))
131, 12ax-mp 5 . 2 ((((𝜑𝜑) → ((⊥ → 𝜑) → 𝜑)) → ((𝜑𝜑) → (𝜑 → (𝜑𝜑)))) → (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑))))
141, 13ax-mp 5 1 (((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ⊥wfal 1480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-tru 1478  df-fal 1481 This theorem is referenced by:  mercolem3  1655  mercolem5  1657  re1tbw3  1663
 Copyright terms: Public domain W3C validator