Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendval Structured version   Visualization version   GIF version

Theorem mendval 36772
Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendval.b 𝐵 = (𝑀 LMHom 𝑀)
mendval.p + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))
mendval.t × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
mendval.s 𝑆 = (Scalar‘𝑀)
mendval.v · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
Assertion
Ref Expression
mendval (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑀,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   × (𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mendval
Dummy variables 𝑚 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝑀𝑋𝑀 ∈ V)
2 oveq12 6558 . . . . . . 7 ((𝑚 = 𝑀𝑚 = 𝑀) → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
32anidms 675 . . . . . 6 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
4 mendval.b . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
53, 4syl6eqr 2662 . . . . 5 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = 𝐵)
65csbeq1d 3506 . . . 4 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}))
7 ovex 6577 . . . . . 6 (𝑚 LMHom 𝑚) ∈ V
85, 7syl6eqelr 2697 . . . . 5 (𝑚 = 𝑀𝐵 ∈ V)
9 simpr 476 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑏 = 𝐵)
109opeq2d 4347 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
11 fveq2 6103 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
12 ofeq 6797 . . . . . . . . . . . 12 ((+g𝑚) = (+g𝑀) → ∘𝑓 (+g𝑚) = ∘𝑓 (+g𝑀))
1311, 12syl 17 . . . . . . . . . . 11 (𝑚 = 𝑀 → ∘𝑓 (+g𝑚) = ∘𝑓 (+g𝑀))
1413oveqdr 6573 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑓 (+g𝑚)𝑦) = (𝑥𝑓 (+g𝑀)𝑦))
159, 9, 14mpt2eq123dv 6615 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦)))
16 mendval.p . . . . . . . . 9 + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))
1715, 16syl6eqr 2662 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦)) = + )
1817opeq2d 4347 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩ = ⟨(+g‘ndx), + ⟩)
19 eqidd 2611 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑦) = (𝑥𝑦))
209, 9, 19mpt2eq123dv 6615 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
21 mendval.t . . . . . . . . 9 × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
2220, 21syl6eqr 2662 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = × )
2322opeq2d 4347 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩ = ⟨(.r‘ndx), × ⟩)
2410, 18, 23tpeq123d 4227 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩})
25 fveq2 6103 . . . . . . . . . 10 (𝑚 = 𝑀 → (Scalar‘𝑚) = (Scalar‘𝑀))
2625adantr 480 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = (Scalar‘𝑀))
27 mendval.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
2826, 27syl6eqr 2662 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = 𝑆)
2928opeq2d 4347 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Scalar‘ndx), (Scalar‘𝑚)⟩ = ⟨(Scalar‘ndx), 𝑆⟩)
3028fveq2d 6107 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘(Scalar‘𝑚)) = (Base‘𝑆))
31 fveq2 6103 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
3231adantr 480 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → ( ·𝑠𝑚) = ( ·𝑠𝑀))
33 ofeq 6797 . . . . . . . . . . . 12 (( ·𝑠𝑚) = ( ·𝑠𝑀) → ∘𝑓 ( ·𝑠𝑚) = ∘𝑓 ( ·𝑠𝑀))
3432, 33syl 17 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ∘𝑓 ( ·𝑠𝑚) = ∘𝑓 ( ·𝑠𝑀))
35 fveq2 6103 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
3635adantr 480 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘𝑚) = (Base‘𝑀))
3736xpeq1d 5062 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ((Base‘𝑚) × {𝑥}) = ((Base‘𝑀) × {𝑥}))
38 eqidd 2611 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑦 = 𝑦)
3934, 37, 38oveq123d 6570 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
4030, 9, 39mpt2eq123dv 6615 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦)))
41 mendval.v . . . . . . . . 9 · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
4240, 41syl6eqr 2662 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦)) = · )
4342opeq2d 4347 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
4429, 43preq12d 4220 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩} = {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
4524, 44uneq12d 3730 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
468, 45csbied 3526 . . . 4 (𝑚 = 𝑀𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
476, 46eqtrd 2644 . . 3 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
48 df-mend 36765 . . 3 MEndo = (𝑚 ∈ V ↦ (𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}))
49 tpex 6855 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V
50 prex 4836 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩} ∈ V
5149, 50unex 6854 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}) ∈ V
5247, 48, 51fvmpt 6191 . 2 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
531, 52syl 17 1 (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  cun 3538  {csn 4125  {cpr 4127  {ctp 4129  cop 4131   × cxp 5036  ccom 5042  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑓 cof 6793  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772   LMHom clmhm 18840  MEndocmend 36764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-mend 36765
This theorem is referenced by:  mendbas  36773  mendplusgfval  36774  mendmulrfval  36776  mendsca  36778  mendvscafval  36779
  Copyright terms: Public domain W3C validator