Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendassa Structured version   Visualization version   GIF version

Theorem mendassa 36783
Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
mendassa.s 𝑆 = (Scalar‘𝑀)
Assertion
Ref Expression
mendassa ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg)

Proof of Theorem mendassa
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 36773 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 mendassa.s . . . 4 𝑆 = (Scalar‘𝑀)
51, 4mendsca 36778 . . 3 𝑆 = (Scalar‘𝐴)
65a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 = (Scalar‘𝐴))
7 eqidd 2611 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (Base‘𝑆) = (Base‘𝑆))
8 eqidd 2611 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → ( ·𝑠𝐴) = ( ·𝑠𝐴))
9 eqidd 2611 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (.r𝐴) = (.r𝐴))
101, 4mendlmod 36782 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)
111mendring 36781 . . 3 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
1211adantr 480 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ Ring)
13 simpr 476 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 ∈ CRing)
14 simpr3 1062 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
15 eqid 2610 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
1615, 15lmhmf 18855 . . . . . . 7 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
1714, 16syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
1817ffvelrnda 6267 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑧𝑣) ∈ (Base‘𝑀))
1917feqmptd 6159 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 = (𝑣 ∈ (Base‘𝑀) ↦ (𝑧𝑣)))
20 simpr1 1060 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (Base‘𝑆))
21 simpr2 1061 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
22 eqid 2610 . . . . . . . 8 ( ·𝑠𝑀) = ( ·𝑠𝑀)
23 eqid 2610 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
24 eqid 2610 . . . . . . . 8 ( ·𝑠𝐴) = ( ·𝑠𝐴)
251, 22, 2, 4, 23, 15, 24mendvsca 36780 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
2620, 21, 25syl2anc 691 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
27 fvex 6113 . . . . . . . 8 (Base‘𝑀) ∈ V
2827a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
29 simplr1 1096 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑤 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
30 fvex 6113 . . . . . . . 8 (𝑦𝑤) ∈ V
3130a1i 11 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑤 ∈ (Base‘𝑀)) → (𝑦𝑤) ∈ V)
32 fconstmpt 5085 . . . . . . . 8 ((Base‘𝑀) × {𝑥}) = (𝑤 ∈ (Base‘𝑀) ↦ 𝑥)
3332a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑤 ∈ (Base‘𝑀) ↦ 𝑥))
3415, 15lmhmf 18855 . . . . . . . . 9 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3521, 34syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3635feqmptd 6159 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 = (𝑤 ∈ (Base‘𝑀) ↦ (𝑦𝑤)))
3728, 29, 31, 33, 36offval2 6812 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦) = (𝑤 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦𝑤))))
3826, 37eqtrd 2644 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (𝑤 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦𝑤))))
39 fveq2 6103 . . . . . 6 (𝑤 = (𝑧𝑣) → (𝑦𝑤) = (𝑦‘(𝑧𝑣)))
4039oveq2d 6565 . . . . 5 (𝑤 = (𝑧𝑣) → (𝑥( ·𝑠𝑀)(𝑦𝑤)) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
4118, 19, 38, 40fmptco 6303 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
42 simplr1 1096 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
43 fvex 6113 . . . . . 6 (𝑦‘(𝑧𝑣)) ∈ V
4443a1i 11 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑦‘(𝑧𝑣)) ∈ V)
45 fconstmpt 5085 . . . . . 6 ((Base‘𝑀) × {𝑥}) = (𝑣 ∈ (Base‘𝑀) ↦ 𝑥)
4645a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑣 ∈ (Base‘𝑀) ↦ 𝑥))
47 eqid 2610 . . . . . . . 8 (.r𝐴) = (.r𝐴)
481, 2, 47mendmulr 36777 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
4921, 14, 48syl2anc 691 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
50 fcompt 6306 . . . . . . 7 ((𝑦:(Base‘𝑀)⟶(Base‘𝑀) ∧ 𝑧:(Base‘𝑀)⟶(Base‘𝑀)) → (𝑦𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
5135, 17, 50syl2anc 691 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
5249, 51eqtrd 2644 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
5328, 42, 44, 46, 52offval2 6812 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
5441, 53eqtr4d 2647 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
5510adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ LMod)
562, 5, 24, 23lmodvscl 18703 . . . . 5 ((𝐴 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
5755, 20, 21, 56syl3anc 1318 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
581, 2, 47mendmulr 36777 . . . 4 (((𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧))
5957, 14, 58syl2anc 691 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧))
6012adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ Ring)
612, 47ringcl 18384 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
6260, 21, 14, 61syl3anc 1318 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
631, 22, 2, 4, 23, 15, 24mendvsca 36780 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
6420, 62, 63syl2anc 691 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
6554, 59, 643eqtr4d 2654 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)))
66 simplr2 1097 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑦 ∈ (𝑀 LMHom 𝑀))
674, 23, 15, 22, 22lmhmlin 18856 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑆) ∧ (𝑧𝑣) ∈ (Base‘𝑀)) → (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
6866, 42, 18, 67syl3anc 1318 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
6968mpteq2dva 4672 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣)))) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
70 simplll 794 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑀 ∈ LMod)
7115, 4, 22, 23lmodvscl 18703 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ (𝑧𝑣) ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)(𝑧𝑣)) ∈ (Base‘𝑀))
7270, 42, 18, 71syl3anc 1318 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)(𝑧𝑣)) ∈ (Base‘𝑀))
731, 22, 2, 4, 23, 15, 24mendvsca 36780 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧))
7420, 14, 73syl2anc 691 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧))
75 fvex 6113 . . . . . . . 8 (𝑧𝑣) ∈ V
7675a1i 11 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑧𝑣) ∈ V)
7728, 42, 76, 46, 19offval2 6812 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑧𝑣))))
7874, 77eqtrd 2644 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑧𝑣))))
79 fveq2 6103 . . . . 5 (𝑤 = (𝑥( ·𝑠𝑀)(𝑧𝑣)) → (𝑦𝑤) = (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))))
8072, 78, 36, 79fmptco 6303 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣)))))
8169, 80, 533eqtr4d 2654 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
822, 5, 24, 23lmodvscl 18703 . . . . 5 ((𝐴 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
8355, 20, 14, 82syl3anc 1318 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
841, 2, 47mendmulr 36777 . . . 4 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)))
8521, 83, 84syl2anc 691 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)))
8681, 85, 643eqtr4d 2654 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)))
873, 6, 7, 8, 9, 10, 12, 13, 65, 86isassad 19144 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  cmpt 4643   × cxp 5036  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  Ringcrg 18370  CRingccrg 18371  LModclmod 18686   LMHom clmhm 18840  AssAlgcasa 19130  MEndocmend 36764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-lmod 18688  df-lmhm 18843  df-assa 19133  df-mend 36765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator