MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetfval Structured version   Visualization version   GIF version

Theorem meetfval 16838
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 16839 first to reduce net proof size (existence part)?
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetfval (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑧,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem meetfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐾𝑉𝐾 ∈ V)
2 meetfval.m . . 3 = (meet‘𝐾)
3 fvex 6113 . . . . . . 7 (Base‘𝐾) ∈ V
4 moeq 3349 . . . . . . . 8 ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
54a1i 11 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}))
6 eqid 2610 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}
73, 3, 5, 6oprabex 7047 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V
87a1i 11 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V)
9 meetfval.u . . . . . . . . . . . 12 𝐺 = (glb‘𝐾)
109glbfun 16816 . . . . . . . . . . 11 Fun 𝐺
11 funbrfv2b 6150 . . . . . . . . . . 11 (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)))
1210, 11ax-mp 5 . . . . . . . . . 10 ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))
13 eqid 2610 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2610 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘𝐾)
15 simpl 472 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → 𝐾 ∈ V)
16 simpr 476 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ∈ dom 𝐺)
1713, 14, 9, 15, 16glbelss 16818 . . . . . . . . . . . . 13 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
1817ex 449 . . . . . . . . . . . 12 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → {𝑥, 𝑦} ⊆ (Base‘𝐾)))
19 vex 3176 . . . . . . . . . . . . 13 𝑥 ∈ V
20 vex 3176 . . . . . . . . . . . . 13 𝑦 ∈ V
2119, 20prss 4291 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
2218, 21syl6ibr 241 . . . . . . . . . . 11 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
23 eqcom 2617 . . . . . . . . . . . . 13 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2423biimpi 205 . . . . . . . . . . . 12 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2524a1i 11 . . . . . . . . . . 11 (𝐾 ∈ V → ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦})))
2622, 25anim12d 584 . . . . . . . . . 10 (𝐾 ∈ V → (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2712, 26syl5bi 231 . . . . . . . . 9 (𝐾 ∈ V → ({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2827alrimiv 1842 . . . . . . . 8 (𝐾 ∈ V → ∀𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2928alrimiv 1842 . . . . . . 7 (𝐾 ∈ V → ∀𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
3029alrimiv 1842 . . . . . 6 (𝐾 ∈ V → ∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
31 ssoprab2 6609 . . . . . 6 (∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
3230, 31syl 17 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
338, 32ssexd 4733 . . . 4 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V)
34 fveq2 6103 . . . . . . . 8 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
3534, 9syl6eqr 2662 . . . . . . 7 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
3635breqd 4594 . . . . . 6 (𝑝 = 𝐾 → ({𝑥, 𝑦} (glb‘𝑝)𝑧 ↔ {𝑥, 𝑦}𝐺𝑧))
3736oprabbidv 6607 . . . . 5 (𝑝 = 𝐾 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
38 df-meet 16800 . . . . 5 meet = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧})
3937, 38fvmptg 6189 . . . 4 ((𝐾 ∈ V ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V) → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
4033, 39mpdan 699 . . 3 (𝐾 ∈ V → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
412, 40syl5eq 2656 . 2 (𝐾 ∈ V → = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
421, 41syl 17 1 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  ∃*wmo 2459  Vcvv 3173  wss 3540  {cpr 4127   class class class wbr 4583  dom cdm 5038  Fun wfun 5798  cfv 5804  {coprab 6550  Basecbs 15695  lecple 15775  glbcglb 16766  meetcmee 16768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-oprab 6553  df-glb 16798  df-meet 16800
This theorem is referenced by:  meetfval2  16839  meet0  16960  odumeet  16963  odujoin  16965
  Copyright terms: Public domain W3C validator