Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measunl Structured version   Visualization version   GIF version

Theorem measunl 29606
Description: A measure is sub-additive with respect to union. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
measunl.1 (𝜑𝑀 ∈ (measures‘𝑆))
measunl.2 (𝜑𝐴𝑆)
measunl.3 (𝜑𝐵𝑆)
Assertion
Ref Expression
measunl (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem measunl
StepHypRef Expression
1 undif1 3995 . . . 4 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
21fveq2i 6106 . . 3 (𝑀‘((𝐴𝐵) ∪ 𝐵)) = (𝑀‘(𝐴𝐵))
3 measunl.1 . . . 4 (𝜑𝑀 ∈ (measures‘𝑆))
4 measbase 29587 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
53, 4syl 17 . . . . 5 (𝜑𝑆 ran sigAlgebra)
6 measunl.2 . . . . 5 (𝜑𝐴𝑆)
7 measunl.3 . . . . 5 (𝜑𝐵𝑆)
8 difelsiga 29523 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
95, 6, 7, 8syl3anc 1318 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑆)
10 incom 3767 . . . . . 6 (𝐵 ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ 𝐵)
11 disjdif 3992 . . . . . 6 (𝐵 ∩ (𝐴𝐵)) = ∅
1210, 11eqtr3i 2634 . . . . 5 ((𝐴𝐵) ∩ 𝐵) = ∅
1312a1i 11 . . . 4 (𝜑 → ((𝐴𝐵) ∩ 𝐵) = ∅)
14 measun 29601 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆𝐵𝑆) ∧ ((𝐴𝐵) ∩ 𝐵) = ∅) → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
153, 9, 7, 13, 14syl121anc 1323 . . 3 (𝜑 → (𝑀‘((𝐴𝐵) ∪ 𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
162, 15syl5eqr 2658 . 2 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)))
17 iccssxr 12127 . . . 4 (0[,]+∞) ⊆ ℝ*
18 measvxrge0 29595 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
193, 9, 18syl2anc 691 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
2017, 19sseldi 3566 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
21 measvxrge0 29595 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
223, 6, 21syl2anc 691 . . . 4 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
2317, 22sseldi 3566 . . 3 (𝜑 → (𝑀𝐴) ∈ ℝ*)
24 measvxrge0 29595 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
253, 7, 24syl2anc 691 . . . 4 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
2617, 25sseldi 3566 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
27 inelsiga 29525 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
285, 6, 7, 27syl3anc 1318 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ 𝑆)
29 measvxrge0 29595 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
303, 28, 29syl2anc 691 . . . . . . 7 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
31 elxrge0 12152 . . . . . . 7 ((𝑀‘(𝐴𝐵)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3230, 31sylib 207 . . . . . 6 (𝜑 → ((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐴𝐵))))
3332simprd 478 . . . . 5 (𝜑 → 0 ≤ (𝑀‘(𝐴𝐵)))
3417, 30sseldi 3566 . . . . . 6 (𝜑 → (𝑀‘(𝐴𝐵)) ∈ ℝ*)
35 xraddge02 28911 . . . . . 6 (((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀‘(𝐴𝐵)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3620, 34, 35syl2anc 691 . . . . 5 (𝜑 → (0 ≤ (𝑀‘(𝐴𝐵)) → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵)))))
3733, 36mpd 15 . . . 4 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
38 uncom 3719 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = ((𝐴𝐵) ∪ (𝐴𝐵))
39 inundif 3998 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
4038, 39eqtr3i 2634 . . . . . 6 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
4140fveq2i 6106 . . . . 5 (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = (𝑀𝐴)
42 incom 3767 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ (𝐴𝐵))
43 inindif 28738 . . . . . . . 8 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4442, 43eqtr3i 2634 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
4544a1i 11 . . . . . 6 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
46 measun 29601 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅) → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
473, 9, 28, 45, 46syl121anc 1323 . . . . 5 (𝜑 → (𝑀‘((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4841, 47syl5eqr 2658 . . . 4 (𝜑 → (𝑀𝐴) = ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀‘(𝐴𝐵))))
4937, 48breqtrrd 4611 . . 3 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴))
50 xleadd1a 11955 . . 3 ((((𝑀‘(𝐴𝐵)) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ* ∧ (𝑀𝐵) ∈ ℝ*) ∧ (𝑀‘(𝐴𝐵)) ≤ (𝑀𝐴)) → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
5120, 23, 26, 49, 50syl31anc 1321 . 2 (𝜑 → ((𝑀‘(𝐴𝐵)) +𝑒 (𝑀𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
5216, 51eqbrtrd 4605 1 (𝜑 → (𝑀‘(𝐴𝐵)) ≤ ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cdif 3537  cun 3538  cin 3539  c0 3874   cuni 4372   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  *cxr 9952  cle 9954   +𝑒 cxad 11820  [,]cicc 12049  sigAlgebracsiga 29497  measurescmeas 29585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-ordt 15984  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-abv 18640  df-lmod 18688  df-scaf 18689  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tmd 21686  df-tgp 21687  df-tsms 21740  df-trg 21773  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-ii 22488  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-esum 29417  df-siga 29498  df-meas 29586
This theorem is referenced by:  aean  29634
  Copyright terms: Public domain W3C validator