Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measfrge0 Structured version   Visualization version   GIF version

Theorem measfrge0 29593
 Description: A measure is a function over its base to the positive extended reals. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
measfrge0 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))

Proof of Theorem measfrge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 measbase 29587 . . . 4 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
2 ismeas 29589 . . . 4 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))))
31, 2syl 17 . . 3 (𝑀 ∈ (measures‘𝑆) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥)))))
43ibi 255 . 2 (𝑀 ∈ (measures‘𝑆) → (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = Σ*𝑥𝑦(𝑀𝑥))))
54simp1d 1066 1 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∅c0 3874  𝒫 cpw 4108  ∪ cuni 4372  Disj wdisj 4553   class class class wbr 4583  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ωcom 6957   ≼ cdom 7839  0cc0 9815  +∞cpnf 9950  [,]cicc 12049  Σ*cesum 29416  sigAlgebracsiga 29497  measurescmeas 29585 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-esum 29417  df-meas 29586 This theorem is referenced by:  measfn  29594  measvxrge0  29595  meascnbl  29609  measres  29612  measdivcstOLD  29614  measdivcst  29615
 Copyright terms: Public domain W3C validator