MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem6 Structured version   Visualization version   GIF version

Theorem mdetunilem6 20242
Description: Lemma for mdetuni 20247. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem6.ph (𝜓𝜑)
mdetunilem6.ef (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
mdetunilem6.gh ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
mdetunilem6.i ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
Assertion
Ref Expression
mdetunilem6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐺,𝑎   𝐻,𝑎   𝑥,𝐼,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑏)   𝐼(𝑎,𝑏)

Proof of Theorem mdetunilem6
StepHypRef Expression
1 mdetuni.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 mdetuni.b . . . . 5 𝐵 = (Base‘𝐴)
3 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
4 mdetuni.0g . . . . 5 0 = (0g𝑅)
5 mdetuni.1r . . . . 5 1 = (1r𝑅)
6 mdetuni.pg . . . . 5 + = (+g𝑅)
7 mdetuni.tg . . . . 5 · = (.r𝑅)
8 mdetuni.n . . . . 5 (𝜑𝑁 ∈ Fin)
9 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
10 mdetuni.ff . . . . 5 (𝜑𝐷:𝐵𝐾)
11 mdetuni.al . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
12 mdetuni.li . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
13 mdetuni.sc . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
14 mdetunilem6.ph . . . . 5 (𝜓𝜑)
15 mdetunilem6.ef . . . . . 6 (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
1615simp1d 1066 . . . . 5 (𝜓𝐸𝑁)
17 mdetunilem6.gh . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
1817simprd 478 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐻𝐾)
19183adant2 1073 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
2017simpld 474 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐺𝐾)
21203adant2 1073 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
22 ringgrp 18375 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2314, 9, 223syl 18 . . . . . . . . . 10 (𝜓𝑅 ∈ Grp)
2423adantr 480 . . . . . . . . 9 ((𝜓𝑏𝑁) → 𝑅 ∈ Grp)
253, 6grpcl 17253 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝐻𝐾𝐺𝐾) → (𝐻 + 𝐺) ∈ 𝐾)
2624, 18, 20, 25syl3anc 1318 . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
27263adant2 1073 . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
28 mdetunilem6.i . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
2927, 28ifcld 4081 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾)
3019, 21, 293jca 1235 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 30mdetunilem5 20241 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))))
321, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 26, 28mdetunilem2 20238 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = 0 )
3315simp2d 1067 . . . . . . . 8 (𝜓𝐹𝑁)
3419, 28ifcld 4081 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾)
3519, 21, 343jca 1235 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 35mdetunilem5 20241 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
3715simp3d 1068 . . . . . . . . . . 11 (𝜓𝐸𝐹)
3837necomd 2837 . . . . . . . . . 10 (𝜓𝐹𝐸)
3933, 16, 383jca 1235 . . . . . . . . 9 (𝜓 → (𝐹𝑁𝐸𝑁𝐹𝐸))
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 18, 28mdetunilem2 20238 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) = 0 )
4140oveq1d 6564 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
4237neneqd 2787 . . . . . . . . . . . . . 14 (𝜓 → ¬ 𝐸 = 𝐹)
43 eqtr2 2630 . . . . . . . . . . . . . 14 ((𝑎 = 𝐸𝑎 = 𝐹) → 𝐸 = 𝐹)
4442, 43nsyl 134 . . . . . . . . . . . . 13 (𝜓 → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
45443ad2ant1 1075 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
46 ifcomnan 4087 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4745, 46syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4847mpt2eq3dva 6617 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))
4948fveq2d 6107 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5014, 10syl 17 . . . . . . . . . 10 (𝜓𝐷:𝐵𝐾)
5114, 8syl 17 . . . . . . . . . . 11 (𝜓𝑁 ∈ Fin)
5221, 28ifcld 4081 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐺, 𝐼) ∈ 𝐾)
5319, 52ifcld 4081 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) ∈ 𝐾)
541, 3, 2, 51, 23, 53matbas2d 20048 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) ∈ 𝐵)
5550, 54ffvelrnd 6268 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾)
5649, 55eqeltrrd 2689 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾)
573, 6, 4grplid 17275 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾) → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5823, 56, 57syl2anc 691 . . . . . . 7 (𝜓 → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5936, 41, 583eqtrd 2648 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
60 ifcomnan 4087 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6145, 60syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6261mpt2eq3dva 6617 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼))))
6362fveq2d 6107 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))))
6459, 63, 493eqtr4d 2654 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))))
6521, 28ifcld 4081 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾)
6619, 21, 653jca 1235 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾))
671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 66mdetunilem5 20241 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))))
681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 20, 28mdetunilem2 20238 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼)))) = 0 )
6968oveq2d 6565 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ))
70 ifcomnan 4087 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7145, 70syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7271mpt2eq3dva 6617 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))
7372fveq2d 6107 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
7419, 28ifcld 4081 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐻, 𝐼) ∈ 𝐾)
7521, 74ifcld 4081 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) ∈ 𝐾)
761, 3, 2, 51, 23, 75matbas2d 20048 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) ∈ 𝐵)
7750, 76ffvelrnd 6268 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾)
7873, 77eqeltrrd 2689 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾)
793, 6, 4grprid 17276 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8023, 78, 79syl2anc 691 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8167, 69, 803eqtrd 2648 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
82 ifcomnan 4087 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8345, 82syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8483mpt2eq3dva 6617 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼))))
8584fveq2d 6107 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8681, 85, 733eqtr4d 2654 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
8764, 86oveq12d 6567 . . . 4 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))))
8831, 32, 873eqtr3rd 2653 . . 3 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 )
89 eqid 2610 . . . . 5 (invg𝑅) = (invg𝑅)
903, 6, 4, 89grpinvid1 17293 . . . 4 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾 ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾) → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9123, 55, 77, 90syl3anc 1318 . . 3 (𝜓 → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9288, 91mpbird 246 . 2 (𝜓 → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
9392eqcomd 2616 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  ifcif 4036  {csn 4125   × cxp 5036  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑓 cof 6793  Fincfn 7841  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  1rcur 18324  Ringcrg 18370   Mat cmat 20032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-ring 18372  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mat 20033
This theorem is referenced by:  mdetunilem7  20243
  Copyright terms: Public domain W3C validator