Step | Hyp | Ref
| Expression |
1 | | mdetmptr12.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ CRing) |
2 | | mdetmptr12.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
3 | | mdetmptr12.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝐵) |
4 | | mdetmptr12.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ 𝐺) |
5 | | mdetpmtr.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
6 | | mdetpmtr.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
7 | | mdetpmtr.d |
. . . 4
⊢ 𝐷 = (𝑁 maDet 𝑅) |
8 | | mdetpmtr.g |
. . . 4
⊢ 𝐺 =
(Base‘(SymGrp‘𝑁)) |
9 | | mdetpmtr.s |
. . . 4
⊢ 𝑆 = (pmSgn‘𝑁) |
10 | | mdetpmtr.z |
. . . 4
⊢ 𝑍 = (ℤRHom‘𝑅) |
11 | | mdetpmtr.t |
. . . 4
⊢ · =
(.r‘𝑅) |
12 | | fveq2 6103 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) |
13 | 12 | oveq1d 6564 |
. . . . 5
⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘)𝑀𝑙) = ((𝑃‘𝑖)𝑀𝑙)) |
14 | | oveq2 6557 |
. . . . 5
⊢ (𝑙 = 𝑗 → ((𝑃‘𝑖)𝑀𝑙) = ((𝑃‘𝑖)𝑀𝑗)) |
15 | 13, 14 | cbvmpt2v 6633 |
. . . 4
⊢ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀𝑗)) |
16 | 5, 6, 7, 8, 9, 10,
11, 15 | mdetpmtr1 29217 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀 ∈ 𝐵 ∧ 𝑃 ∈ 𝐺)) → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))))) |
17 | 1, 2, 3, 4, 16 | syl22anc 1319 |
. 2
⊢ (𝜑 → (𝐷‘𝑀) = (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))))) |
18 | | eqid 2610 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
19 | 4 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑃 ∈ 𝐺) |
20 | | simp2 1055 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
21 | | eqid 2610 |
. . . . . . . . 9
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
22 | 21, 8 | symgfv 17630 |
. . . . . . . 8
⊢ ((𝑃 ∈ 𝐺 ∧ 𝑘 ∈ 𝑁) → (𝑃‘𝑘) ∈ 𝑁) |
23 | 19, 20, 22 | syl2anc 691 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑃‘𝑘) ∈ 𝑁) |
24 | | simp3 1056 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) |
25 | 3 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
26 | 5, 18, 6, 23, 24, 25 | matecld 20051 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → ((𝑃‘𝑘)𝑀𝑙) ∈ (Base‘𝑅)) |
27 | 5, 18, 6, 2, 1, 26 | matbas2d 20048 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙)) ∈ 𝐵) |
28 | | mdetmptr12.q |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ 𝐺) |
29 | | eqid 2610 |
. . . . . 6
⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗))) |
30 | 5, 6, 7, 8, 9, 10,
11, 29 | mdetpmtr2 29218 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ ((𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙)) ∈ 𝐵 ∧ 𝑄 ∈ 𝐺)) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))) = (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗)))))) |
31 | 1, 2, 27, 28, 30 | syl22anc 1319 |
. . . 4
⊢ (𝜑 → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))) = (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗)))))) |
32 | | eqidd 2611 |
. . . . 5
⊢ (𝜑 → ((𝑍 ∘ 𝑆)‘𝑄) = ((𝑍 ∘ 𝑆)‘𝑄)) |
33 | | simp2 1055 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
34 | 28 | 3ad2ant1 1075 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑄 ∈ 𝐺) |
35 | | simp3 1056 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
36 | 21, 8 | symgfv 17630 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ 𝐺 ∧ 𝑗 ∈ 𝑁) → (𝑄‘𝑗) ∈ 𝑁) |
37 | 34, 35, 36 | syl2anc 691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑄‘𝑗) ∈ 𝑁) |
38 | | oveq2 6557 |
. . . . . . . . . 10
⊢ (𝑙 = (𝑄‘𝑗) → ((𝑃‘𝑖)𝑀𝑙) = ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) |
39 | | eqid 2610 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙)) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙)) |
40 | | ovex 6577 |
. . . . . . . . . 10
⊢ ((𝑃‘𝑖)𝑀(𝑄‘𝑗)) ∈ V |
41 | 13, 38, 39, 40 | ovmpt2 6694 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝑁 ∧ (𝑄‘𝑗) ∈ 𝑁) → (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗)) = ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) |
42 | 33, 37, 41 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗)) = ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) |
43 | 42 | mpt2eq3dva 6617 |
. . . . . . 7
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀(𝑄‘𝑗)))) |
44 | | mdetpmtr12.e |
. . . . . . 7
⊢ 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) |
45 | 43, 44 | syl6reqr 2663 |
. . . . . 6
⊢ (𝜑 → 𝐸 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗)))) |
46 | 45 | fveq2d 6107 |
. . . . 5
⊢ (𝜑 → (𝐷‘𝐸) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗))))) |
47 | 32, 46 | oveq12d 6567 |
. . . 4
⊢ (𝜑 → (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘𝐸)) = (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))(𝑄‘𝑗)))))) |
48 | 31, 47 | eqtr4d 2647 |
. . 3
⊢ (𝜑 → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙))) = (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘𝐸))) |
49 | 48 | oveq2d 6565 |
. 2
⊢ (𝜑 → (((𝑍 ∘ 𝑆)‘𝑃) · (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ ((𝑃‘𝑘)𝑀𝑙)))) = (((𝑍 ∘ 𝑆)‘𝑃) · (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘𝐸)))) |
50 | | crngring 18381 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
51 | 1, 50 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
52 | 8, 9, 10 | zrhcopsgnelbas 19760 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺) → ((𝑍 ∘ 𝑆)‘𝑃) ∈ (Base‘𝑅)) |
53 | 51, 2, 4, 52 | syl3anc 1318 |
. . . 4
⊢ (𝜑 → ((𝑍 ∘ 𝑆)‘𝑃) ∈ (Base‘𝑅)) |
54 | 8, 9, 10 | zrhcopsgnelbas 19760 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺) → ((𝑍 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) |
55 | 51, 2, 28, 54 | syl3anc 1318 |
. . . 4
⊢ (𝜑 → ((𝑍 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) |
56 | 4 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ 𝐺) |
57 | 21, 8 | symgfv 17630 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝐺 ∧ 𝑖 ∈ 𝑁) → (𝑃‘𝑖) ∈ 𝑁) |
58 | 56, 33, 57 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑃‘𝑖) ∈ 𝑁) |
59 | 3 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
60 | 5, 18, 6, 58, 37, 59 | matecld 20051 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑃‘𝑖)𝑀(𝑄‘𝑗)) ∈ (Base‘𝑅)) |
61 | 5, 18, 6, 2, 1, 60 | matbas2d 20048 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑃‘𝑖)𝑀(𝑄‘𝑗))) ∈ 𝐵) |
62 | 44, 61 | syl5eqel 2692 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ 𝐵) |
63 | 7, 5, 6, 18 | mdetcl 20221 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝐸 ∈ 𝐵) → (𝐷‘𝐸) ∈ (Base‘𝑅)) |
64 | 1, 62, 63 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝐷‘𝐸) ∈ (Base‘𝑅)) |
65 | 18, 11 | ringass 18387 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (((𝑍 ∘ 𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅) ∧ (𝐷‘𝐸) ∈ (Base‘𝑅))) → ((((𝑍 ∘ 𝑆)‘𝑃) · ((𝑍 ∘ 𝑆)‘𝑄)) · (𝐷‘𝐸)) = (((𝑍 ∘ 𝑆)‘𝑃) · (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘𝐸)))) |
66 | 51, 53, 55, 64, 65 | syl13anc 1320 |
. . 3
⊢ (𝜑 → ((((𝑍 ∘ 𝑆)‘𝑃) · ((𝑍 ∘ 𝑆)‘𝑄)) · (𝐷‘𝐸)) = (((𝑍 ∘ 𝑆)‘𝑃) · (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘𝐸)))) |
67 | 8, 10, 9 | zrhcofipsgn 19758 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺) → ((𝑍 ∘ 𝑆)‘𝑃) = (𝑍‘(𝑆‘𝑃))) |
68 | 2, 4, 67 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 → ((𝑍 ∘ 𝑆)‘𝑃) = (𝑍‘(𝑆‘𝑃))) |
69 | 8, 10, 9 | zrhcofipsgn 19758 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺) → ((𝑍 ∘ 𝑆)‘𝑄) = (𝑍‘(𝑆‘𝑄))) |
70 | 2, 28, 69 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 → ((𝑍 ∘ 𝑆)‘𝑄) = (𝑍‘(𝑆‘𝑄))) |
71 | 68, 70 | oveq12d 6567 |
. . . . 5
⊢ (𝜑 → (((𝑍 ∘ 𝑆)‘𝑃) · ((𝑍 ∘ 𝑆)‘𝑄)) = ((𝑍‘(𝑆‘𝑃)) · (𝑍‘(𝑆‘𝑄)))) |
72 | 10 | zrhrhm 19679 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑍 ∈ (ℤring
RingHom 𝑅)) |
73 | 51, 72 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ (ℤring RingHom
𝑅)) |
74 | | 1z 11284 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
75 | | neg1z 11290 |
. . . . . . . 8
⊢ -1 ∈
ℤ |
76 | | prssi 4293 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆
ℤ) |
77 | 74, 75, 76 | mp2an 704 |
. . . . . . 7
⊢ {1, -1}
⊆ ℤ |
78 | 8, 9 | psgnran 17758 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ 𝐺) → (𝑆‘𝑃) ∈ {1, -1}) |
79 | 2, 4, 78 | syl2anc 691 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑃) ∈ {1, -1}) |
80 | 77, 79 | sseldi 3566 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝑃) ∈ ℤ) |
81 | 8, 9 | psgnran 17758 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐺) → (𝑆‘𝑄) ∈ {1, -1}) |
82 | 2, 28, 81 | syl2anc 691 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑄) ∈ {1, -1}) |
83 | 77, 82 | sseldi 3566 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝑄) ∈ ℤ) |
84 | | zringbas 19643 |
. . . . . . 7
⊢ ℤ =
(Base‘ℤring) |
85 | | zringmulr 19646 |
. . . . . . 7
⊢ ·
= (.r‘ℤring) |
86 | 84, 85, 11 | rhmmul 18550 |
. . . . . 6
⊢ ((𝑍 ∈ (ℤring
RingHom 𝑅) ∧ (𝑆‘𝑃) ∈ ℤ ∧ (𝑆‘𝑄) ∈ ℤ) → (𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) = ((𝑍‘(𝑆‘𝑃)) · (𝑍‘(𝑆‘𝑄)))) |
87 | 73, 80, 83, 86 | syl3anc 1318 |
. . . . 5
⊢ (𝜑 → (𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) = ((𝑍‘(𝑆‘𝑃)) · (𝑍‘(𝑆‘𝑄)))) |
88 | 71, 87 | eqtr4d 2647 |
. . . 4
⊢ (𝜑 → (((𝑍 ∘ 𝑆)‘𝑃) · ((𝑍 ∘ 𝑆)‘𝑄)) = (𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄)))) |
89 | 88 | oveq1d 6564 |
. . 3
⊢ (𝜑 → ((((𝑍 ∘ 𝑆)‘𝑃) · ((𝑍 ∘ 𝑆)‘𝑄)) · (𝐷‘𝐸)) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐷‘𝐸))) |
90 | 66, 89 | eqtr3d 2646 |
. 2
⊢ (𝜑 → (((𝑍 ∘ 𝑆)‘𝑃) · (((𝑍 ∘ 𝑆)‘𝑄) · (𝐷‘𝐸))) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐷‘𝐸))) |
91 | 17, 49, 90 | 3eqtrd 2648 |
1
⊢ (𝜑 → (𝐷‘𝑀) = ((𝑍‘((𝑆‘𝑃) · (𝑆‘𝑄))) · (𝐷‘𝐸))) |