Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdet0 Structured version   Visualization version   GIF version

Theorem mdet0 20231
 Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019.)
Hypotheses
Ref Expression
mdet0.d 𝐷 = (𝑁 maDet 𝑅)
mdet0.a 𝐴 = (𝑁 Mat 𝑅)
mdet0.b 𝐵 = (Base‘𝐴)
mdet0.z 𝑍 = (0g𝐴)
mdet0.0 0 = (0g𝑅)
Assertion
Ref Expression
mdet0 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷𝑍) = 0 )

Proof of Theorem mdet0
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3890 . . 3 (𝑁 ≠ ∅ ↔ ∃𝑖 𝑖𝑁)
2 crngring 18381 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
32anim1i 590 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
43ancomd 466 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
54adantr 480 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
6 mdet0.z . . . . . . . . 9 𝑍 = (0g𝐴)
7 mdet0.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
8 mdet0.0 . . . . . . . . . 10 0 = (0g𝑅)
97, 8mat0op 20044 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁0 ))
106, 9syl5eq 2656 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑍 = (𝑥𝑁, 𝑦𝑁0 ))
115, 10syl 17 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → 𝑍 = (𝑥𝑁, 𝑦𝑁0 ))
1211fveq2d 6107 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → (𝐷𝑍) = (𝐷‘(𝑥𝑁, 𝑦𝑁0 )))
13 ifid 4075 . . . . . . . . . 10 if(𝑥 = 𝑖, 0 , 0 ) = 0
1413eqcomi 2619 . . . . . . . . 9 0 = if(𝑥 = 𝑖, 0 , 0 )
1514a1i 11 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → 0 = if(𝑥 = 𝑖, 0 , 0 ))
1615mpt2eq3dv 6619 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → (𝑥𝑁, 𝑦𝑁0 ) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 )))
1716fveq2d 6107 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → (𝐷‘(𝑥𝑁, 𝑦𝑁0 )) = (𝐷‘(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))))
18 mdet0.d . . . . . . 7 𝐷 = (𝑁 maDet 𝑅)
19 eqid 2610 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
20 simpll 786 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → 𝑅 ∈ CRing)
21 simpr 476 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
2221adantr 480 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → 𝑁 ∈ Fin)
23 ringmnd 18379 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
242, 23syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
2524adantr 480 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Mnd)
2619, 8mndidcl 17131 . . . . . . . . . 10 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
2725, 26syl 17 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 0 ∈ (Base‘𝑅))
2827adantr 480 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → 0 ∈ (Base‘𝑅))
29283ad2ant1 1075 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) ∧ 𝑥𝑁𝑦𝑁) → 0 ∈ (Base‘𝑅))
30 simpr 476 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → 𝑖𝑁)
3118, 19, 8, 20, 22, 29, 30mdetr0 20230 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → (𝐷‘(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))) = 0 )
3212, 17, 313eqtrd 2648 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖𝑁) → (𝐷𝑍) = 0 )
3332ex 449 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑖𝑁 → (𝐷𝑍) = 0 ))
3433exlimdv 1848 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∃𝑖 𝑖𝑁 → (𝐷𝑍) = 0 ))
351, 34syl5bi 231 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ≠ ∅ → (𝐷𝑍) = 0 ))
36353impia 1253 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷𝑍) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∅c0 3874  ifcif 4036  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  Basecbs 15695  0gc0g 15923  Mndcmnd 17117  Ringcrg 18370  CRingccrg 18371   Mat cmat 20032   maDet cmdat 20209 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-reverse 13160  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-symg 17621  df-pmtr 17685  df-psgn 17734  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-mdet 20210 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator