MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 23642
Description: Lemma for mdegmulle2 23643. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2610 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 19264 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))))))
98fveq1d 6105 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥))
109adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥))
11 breq2 4587 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒𝑟𝑐𝑒𝑟𝑥))
1211rabbidv 3164 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒𝑟𝑐} = {𝑒𝐴𝑒𝑟𝑥})
13 oveq1 6556 . . . . . . . . . . 11 (𝑐 = 𝑥 → (𝑐𝑓𝑑) = (𝑥𝑓𝑑))
1413fveq2d 6107 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐𝑓𝑑)) = (𝐺‘(𝑥𝑓𝑑)))
1514oveq2d 6565 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))
1612, 15mpteq12dv 4663 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑)))))
1716oveq2d 6565 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
18 eqid 2610 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))
19 ovex 6577 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) ∈ V
2017, 18, 19fvmpt 6191 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
2120ad2antrl 760 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
22 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
23 eqid 2610 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
24 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
256ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
26 elrabi 3328 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} → 𝑑𝐴)
2726adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑑𝐴)
2827adantrr 749 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2922, 1, 2mdegxrcl 23631 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
306, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3130ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐹) ∈ ℝ*)
32 nn0ssre 11173 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
33 ressxr 9962 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3432, 33sstri 3577 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
35 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3634, 35sseldi 3566 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3736ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℝ*)
38 mdegaddle.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼𝑉)
395, 24tdeglem1 23622 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉𝐻:𝐴⟶ℕ0)
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻:𝐴⟶ℕ0)
4140ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐻:𝐴⟶ℕ0)
4241, 27ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℕ0)
4334, 42sseldi 3566 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℝ*)
4431, 37, 433jca 1235 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4544adantrr 749 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
46 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4746ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐹) ≤ 𝐽)
4847anim1i 590 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4948anasss 677 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
50 xrlelttr 11863 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
5145, 49, 50sylc 63 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
5222, 1, 2, 23, 5, 24, 25, 28, 51mdeglt 23629 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5352oveq1d 6564 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))
54 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5554ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑅 ∈ Ring)
56 eqid 2610 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
571, 56, 2, 5, 7mplelf 19254 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5857ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
59 ssrab2 3650 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒𝑟𝑥} ⊆ 𝐴
6038ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐼𝑉)
61 simplrl 796 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑥𝐴)
62 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥})
63 eqid 2610 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒𝑟𝑥} = {𝑒𝐴𝑒𝑟𝑥}
645, 63psrbagconcl 19194 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ {𝑒𝐴𝑒𝑟𝑥})
6560, 61, 62, 64syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ {𝑒𝐴𝑒𝑟𝑥})
6659, 65sseldi 3566 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ 𝐴)
6758, 66ffvelrnd 6268 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐺‘(𝑥𝑓𝑑)) ∈ (Base‘𝑅))
6856, 3, 23ringlz 18410 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥𝑓𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
6955, 67, 68syl2anc 691 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
7069adantrr 749 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
7153, 70eqtrd 2644 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
7271anassrs 678 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
737ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → 𝐺𝐵)
7466adantrr 749 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝑥𝑓𝑑) ∈ 𝐴)
7522, 1, 2mdegxrcl 23631 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
767, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7776ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐺) ∈ ℝ*)
78 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7934, 78sseldi 3566 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
8079ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℝ*)
8141, 66ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℕ0)
8234, 81sseldi 3566 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*)
8377, 80, 823jca 1235 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*))
8483adantrr 749 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*))
85 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8685ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐺) ≤ 𝐾)
8786anim1i 590 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))))
8887anasss 677 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))))
89 xrlelttr 11863 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥𝑓𝑑))))
9084, 88, 89sylc 63 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥𝑓𝑑)))
9122, 1, 2, 23, 5, 24, 73, 74, 90mdeglt 23629 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝐺‘(𝑥𝑓𝑑)) = (0g𝑅))
9291oveq2d 6565 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
931, 56, 2, 5, 6mplelf 19254 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
9493ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9594, 27ffvelrnd 6268 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9656, 3, 23ringrz 18411 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9755, 95, 96syl2anc 691 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9897adantrr 749 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9992, 98eqtrd 2644 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
10099anassrs 678 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
101 simplrr 797 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
10242nn0red 11229 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℝ)
10381nn0red 11229 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ)
10435ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℕ0)
105104nn0red 11229 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℝ)
10678ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℕ0)
107106nn0red 11229 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℝ)
108 le2add 10389 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾)))
109102, 103, 105, 107, 108syl22anc 1319 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾)))
1105, 24tdeglem3 23623 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑑𝐴 ∧ (𝑥𝑓𝑑) ∈ 𝐴) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))))
11160, 27, 66, 110syl3anc 1318 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))))
1125psrbagf 19186 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑑𝐴) → 𝑑:𝐼⟶ℕ0)
1131123adant3 1074 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
114113ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
115114nn0cnd 11230 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1165psrbagf 19186 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
1171163adant2 1073 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
118117ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
119118nn0cnd 11230 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
120115, 119pncan3d 10274 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
121120mpteq2dva 4672 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
122 simp1 1054 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
123 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (𝑑𝑏) ∈ V
124123a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
125 ovex 6577 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑏) − (𝑑𝑏)) ∈ V
126125a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
127113feqmptd 6159 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
128 fvex 6113 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑏) ∈ V
129128a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
130117feqmptd 6159 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
131122, 129, 124, 130, 127offval2 6812 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥𝑓𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
132122, 124, 126, 127, 131offval2 6812 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑𝑓 + (𝑥𝑓𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
133121, 132, 1303eqtr4d 2654 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑𝑓 + (𝑥𝑓𝑑)) = 𝑥)
13460, 27, 61, 133syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑑𝑓 + (𝑥𝑓𝑑)) = 𝑥)
135134fveq2d 6107 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = (𝐻𝑥))
136111, 135eqtr3d 2646 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) = (𝐻𝑥))
137136breq1d 4593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
138109, 137sylibd 228 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
139102, 105lenltd 10062 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
140103, 107lenltd 10062 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
141139, 140anbi12d 743 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))))
142 ioran 510 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
143141, 142syl6bbr 277 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))))
14441, 61ffvelrnd 6268 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑥) ∈ ℕ0)
145144nn0red 11229 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑥) ∈ ℝ)
14635, 78nn0addcld 11232 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
147146ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
148147nn0red 11229 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
149145, 148lenltd 10062 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
150138, 143, 1493imtr3d 281 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
151101, 150mt4d 151 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
15272, 100, 151mpjaodan 823 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
153152mpteq2dva 4672 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅)))
154153oveq2d 6565 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))))
155 ringmnd 18379 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15654, 155syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
157156adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
158 ovex 6577 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
1595, 158rab2ex 4743 . . . . . . 7 {𝑒𝐴𝑒𝑟𝑥} ∈ V
16023gsumz 17197 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒𝑟𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))) = (0g𝑅))
161157, 159, 160sylancl 693 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))) = (0g𝑅))
162154, 161eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) = (0g𝑅))
16310, 21, 1623eqtrd 2648 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
164163expr 641 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
165164ralrimiva 2949 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1661mplring 19273 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
16738, 54, 166syl2anc 691 . . . 4 (𝜑𝑌 ∈ Ring)
1682, 4ringcl 18384 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
169167, 6, 7, 168syl3anc 1318 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
17034, 146sseldi 3566 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
17122, 1, 2, 23, 5, 24mdegleb 23628 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
172169, 170, 171syl2anc 691 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
173165, 172mpbird 246 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173   class class class wbr 4583  cmpt 4643  ccnv 5037  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑟 cofr 6794  𝑚 cmap 7744  Fincfn 7841  cr 9814   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Ringcrg 18370   mPoly cmpl 19174  fldccnfld 19567   mDeg cmdg 23617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-psr 19177  df-mpl 19179  df-cnfld 19568  df-mdeg 23619
This theorem is referenced by:  mdegmulle2  23643
  Copyright terms: Public domain W3C validator