Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegaddle Structured version   Visualization version   GIF version

 Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
Assertion
Ref Expression
mdegaddle (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))

Dummy variables 𝑐 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . . . 10 𝑌 = (𝐼 mPoly 𝑅)
2 mdegaddle.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
3 eqid 2610 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
4 mdegaddle.p . . . . . . . . . 10 + = (+g𝑌)
5 mdegaddle.f . . . . . . . . . 10 (𝜑𝐹𝐵)
6 mdegaddle.g . . . . . . . . . 10 (𝜑𝐺𝐵)
71, 2, 3, 4, 5, 6mpladd 19263 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹𝑓 (+g𝑅)𝐺))
87fveq1d 6105 . . . . . . . 8 (𝜑 → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑓 (+g𝑅)𝐺)‘𝑐))
98adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑓 (+g𝑅)𝐺)‘𝑐))
10 eqid 2610 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2610 . . . . . . . . . . 11 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
121, 10, 2, 11, 5mplelf 19254 . . . . . . . . . 10 (𝜑𝐹:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
13 ffn 5958 . . . . . . . . . 10 (𝐹:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅) → 𝐹 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1412, 13syl 17 . . . . . . . . 9 (𝜑𝐹 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1514adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐹 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
161, 10, 2, 11, 6mplelf 19254 . . . . . . . . . 10 (𝜑𝐺:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
17 ffn 5958 . . . . . . . . . 10 (𝐺:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅) → 𝐺 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1816, 17syl 17 . . . . . . . . 9 (𝜑𝐺 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
1918adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
20 ovex 6577 . . . . . . . . . 10 (ℕ0𝑚 𝐼) ∈ V
2120rabex 4740 . . . . . . . . 9 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
2221a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V)
23 simpr 476 . . . . . . . 8 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
24 fnfvof 6809 . . . . . . . 8 (((𝐹 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝐺 Fn {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ ({𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V ∧ 𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})) → ((𝐹𝑓 (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2515, 19, 22, 23, 24syl22anc 1319 . . . . . . 7 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹𝑓 (+g𝑅)𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
269, 25eqtrd 2644 . . . . . 6 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
2726adantrr 749 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = ((𝐹𝑐)(+g𝑅)(𝐺𝑐)))
28 mdegaddle.d . . . . . . . 8 𝐷 = (𝐼 mDeg 𝑅)
29 eqid 2610 . . . . . . . 8 (0g𝑅) = (0g𝑅)
30 eqid 2610 . . . . . . . 8 (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
315adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐹𝐵)
32 simprl 790 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
3328, 1, 2mdegxrcl 23631 . . . . . . . . . . . . 13 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
345, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3534adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐹) ∈ ℝ*)
3628, 1, 2mdegxrcl 23631 . . . . . . . . . . . . . 14 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
376, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐺) ∈ ℝ*)
3837, 34ifcld 4081 . . . . . . . . . . . 12 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
3938adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
40 nn0ssre 11173 . . . . . . . . . . . . 13 0 ⊆ ℝ
41 ressxr 9962 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
4240, 41sstri 3577 . . . . . . . . . . . 12 0 ⊆ ℝ*
43 mdegaddle.i . . . . . . . . . . . . . 14 (𝜑𝐼𝑉)
4411, 30tdeglem1 23622 . . . . . . . . . . . . . 14 (𝐼𝑉 → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
4543, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
4645ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℕ0)
4742, 46sseldi 3566 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*)
4835, 39, 473jca 1235 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
4948adantrr 749 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
50 xrmax1 11880 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
5134, 37, 50syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
5251adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
53 simprr 792 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5452, 53jca 553 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
55 xrlelttr 11863 . . . . . . . . 9 (((𝐷𝐹) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐹) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
5649, 54, 55sylc 63 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐹) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
5728, 1, 2, 29, 11, 30, 31, 32, 56mdeglt 23629 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐹𝑐) = (0g𝑅))
586adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → 𝐺𝐵)
5937adantr 480 . . . . . . . . . . 11 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐷𝐺) ∈ ℝ*)
6059, 39, 473jca 1235 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
6160adantrr 749 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*))
62 xrmax2 11881 . . . . . . . . . . . 12 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6334, 37, 62syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6463adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
6564, 53jca 553 . . . . . . . . 9 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
66 xrlelttr 11863 . . . . . . . . 9 (((𝐷𝐺) ∈ ℝ* ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ* ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) ∈ ℝ*) → (((𝐷𝐺) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐)))
6761, 65, 66sylc 63 . . . . . . . 8 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))
6828, 1, 2, 29, 11, 30, 58, 32, 67mdeglt 23629 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → (𝐺𝑐) = (0g𝑅))
6957, 68oveq12d 6567 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = ((0g𝑅)(+g𝑅)(0g𝑅)))
70 mdegaddle.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
71 ringgrp 18375 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7270, 71syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
7310, 29ring0cl 18392 . . . . . . . . 9 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
7470, 73syl 17 . . . . . . . 8 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
7510, 3, 29grplid 17275 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7672, 74, 75syl2anc 691 . . . . . . 7 (𝜑 → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7776adantr 480 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
7869, 77eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹𝑐)(+g𝑅)(𝐺𝑐)) = (0g𝑅))
7927, 78eqtrd 2644 . . . 4 ((𝜑 ∧ (𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐))) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))
8079expr 641 . . 3 ((𝜑𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
8180ralrimiva 2949 . 2 (𝜑 → ∀𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅)))
821mplring 19273 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
8343, 70, 82syl2anc 691 . . . 4 (𝜑𝑌 ∈ Ring)
842, 4ringacl 18401 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
8583, 5, 6, 84syl3anc 1318 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
8628, 1, 2, 29, 11, 30mdegleb 23628 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*) → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8785, 38, 86syl2anc 691 . 2 (𝜑 → ((𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ↔ ∀𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑐) → ((𝐹 + 𝐺)‘𝑐) = (0g𝑅))))
8881, 87mpbird 246 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ◡ccnv 5037   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   ↑𝑚 cmap 7744  Fincfn 7841  ℝcr 9814  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  ℕcn 10897  ℕ0cn0 11169  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Grpcgrp 17245  Ringcrg 18370   mPoly cmpl 19174  ℂfldccnfld 19567   mDeg cmdg 23617 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-psr 19177  df-mpl 19179  df-cnfld 19568  df-mdeg 23619 This theorem is referenced by:  deg1addle  23665
 Copyright terms: Public domain W3C validator