MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmul Structured version   Visualization version   GIF version

Theorem mbfmul 23299
Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
Assertion
Ref Expression
mbfmul (𝜑 → (𝐹𝑓 · 𝐺) ∈ MblFn)

Proof of Theorem mbfmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
2 mbff 23200 . . . . 5 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
31, 2syl 17 . . . 4 (𝜑𝐹:dom 𝐹⟶ℂ)
4 ffn 5958 . . . 4 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
53, 4syl 17 . . 3 (𝜑𝐹 Fn dom 𝐹)
6 mbfmul.2 . . . . 5 (𝜑𝐺 ∈ MblFn)
7 mbff 23200 . . . . 5 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
86, 7syl 17 . . . 4 (𝜑𝐺:dom 𝐺⟶ℂ)
9 ffn 5958 . . . 4 (𝐺:dom 𝐺⟶ℂ → 𝐺 Fn dom 𝐺)
108, 9syl 17 . . 3 (𝜑𝐺 Fn dom 𝐺)
11 mbfdm 23201 . . . 4 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
121, 11syl 17 . . 3 (𝜑 → dom 𝐹 ∈ dom vol)
13 mbfdm 23201 . . . 4 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
146, 13syl 17 . . 3 (𝜑 → dom 𝐺 ∈ dom vol)
15 eqid 2610 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
16 eqidd 2611 . . 3 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2611 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
185, 10, 12, 14, 15, 16, 17offval 6802 . 2 (𝜑 → (𝐹𝑓 · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
19 elin 3758 . . . . . . . . 9 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
2019simplbi 475 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
21 ffvelrn 6265 . . . . . . . 8 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
223, 20, 21syl2an 493 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
2319simprbi 479 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
24 ffvelrn 6265 . . . . . . . 8 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
258, 23, 24syl2an 493 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
2622, 25remuld 13806 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘((𝐹𝑥) · (𝐺𝑥))) = (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
2726mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))))))
28 inmbl 23117 . . . . . . 7 ((dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2912, 14, 28syl2anc 691 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
30 ovex 6577 . . . . . . 7 ((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V
3130a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V)
32 ovex 6577 . . . . . . 7 ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V
3332a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V)
3422recld 13782 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
3525recld 13782 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐺𝑥)) ∈ ℝ)
36 eqidd 2611 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))))
37 eqidd 2611 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))
3829, 34, 35, 36, 37offval2 6812 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
3922imcld 13783 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
4025imcld 13783 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐺𝑥)) ∈ ℝ)
41 eqidd 2611 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))))
42 eqidd 2611 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))
4329, 39, 40, 41, 42offval2 6812 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
4429, 31, 33, 38, 43offval2 6812 . . . . 5 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘𝑓 − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))))))
4527, 44eqtr4d 2647 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘𝑓 − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))))
46 inss1 3795 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
47 resmpt 5369 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
4846, 47ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥))
493feqmptd 6159 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
5049, 1eqeltrrd 2689 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn)
51 mbfres 23217 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5250, 29, 51syl2anc 691 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5348, 52syl5eqelr 2693 . . . . . . . 8 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn)
5422ismbfcn2 23212 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)))
5553, 54mpbid 221 . . . . . . 7 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn))
5655simpld 474 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
57 inss2 3796 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
58 resmpt 5369 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
5957, 58ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥))
608feqmptd 6159 . . . . . . . . . . 11 (𝜑𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
6160, 6eqeltrrd 2689 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn)
62 mbfres 23217 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
6361, 29, 62syl2anc 691 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
6459, 63syl5eqelr 2693 . . . . . . . 8 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn)
6525ismbfcn2 23212 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn)))
6664, 65mpbid 221 . . . . . . 7 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn))
6766simpld 474 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn)
68 eqid 2610 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥)))
6934, 68fmptd 6292 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
70 eqid 2610 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))
7135, 70fmptd 6292 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
7256, 67, 69, 71mbfmullem 23298 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∈ MblFn)
7355simprd 478 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)
7466simprd 478 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn)
75 eqid 2610 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥)))
7639, 75fmptd 6292 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
77 eqid 2610 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))
7840, 77fmptd 6292 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
7973, 74, 76, 78mbfmullem 23298 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∈ MblFn)
8072, 79mbfsub 23235 . . . 4 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘𝑓 − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))) ∈ MblFn)
8145, 80eqeltrd 2688 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)
8222, 25immuld 13807 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘((𝐹𝑥) · (𝐺𝑥))) = (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
8382mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))))))
84 ovex 6577 . . . . . . 7 ((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V
8584a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V)
86 ovex 6577 . . . . . . 7 ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V
8786a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V)
8829, 34, 40, 36, 42offval2 6812 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
8929, 39, 35, 41, 37offval2 6812 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
9029, 85, 87, 88, 89offval2 6812 . . . . 5 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘𝑓 + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))))))
9183, 90eqtr4d 2647 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘𝑓 + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))))
9256, 74, 69, 78mbfmullem 23298 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∈ MblFn)
9373, 67, 76, 71mbfmullem 23298 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∈ MblFn)
9492, 93mbfadd 23234 . . . 4 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘𝑓 + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘𝑓 · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))) ∈ MblFn)
9591, 94eqeltrd 2688 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)
9622, 25mulcld 9939 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
9796ismbfcn2 23212 . . 3 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)))
9881, 95, 97mpbir2and 959 . 2 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn)
9918, 98eqeltrd 2688 1 (𝜑 → (𝐹𝑓 · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  cmpt 4643  dom cdm 5038  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814   + caddc 9818   · cmul 9820  cmin 10145  cre 13685  cim 13686  volcvol 23039  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-0p 23243
This theorem is referenced by:  bddmulibl  23411
  Copyright terms: Public domain W3C validator