Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnt Structured version   Visualization version   GIF version

Theorem mbfmcnt 29657
Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
mbfmcnt (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑𝑚 𝑂))

Proof of Theorem mbfmcnt
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsiga 29520 . . . . . 6 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
2 elrnsiga 29516 . . . . . 6 (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) → 𝒫 𝑂 ran sigAlgebra)
31, 2syl 17 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ran sigAlgebra)
4 brsigarn 29574 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
5 elrnsiga 29516 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
64, 5mp1i 13 . . . . 5 (𝑂𝑉 → 𝔅 ran sigAlgebra)
73, 6ismbfm 29641 . . . 4 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
8 unibrsiga 29576 . . . . . . . . . 10 𝔅 = ℝ
9 reex 9906 . . . . . . . . . 10 ℝ ∈ V
108, 9eqeltri 2684 . . . . . . . . 9 𝔅 ∈ V
11 unipw 4845 . . . . . . . . . 10 𝒫 𝑂 = 𝑂
12 elex 3185 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ V)
1311, 12syl5eqel 2692 . . . . . . . . 9 (𝑂𝑉 𝒫 𝑂 ∈ V)
14 elmapg 7757 . . . . . . . . 9 (( 𝔅 ∈ V ∧ 𝒫 𝑂 ∈ V) → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1510, 13, 14sylancr 694 . . . . . . . 8 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ 𝑓: 𝒫 𝑂 𝔅))
1611feq2i 5950 . . . . . . . 8 (𝑓: 𝒫 𝑂 𝔅𝑓:𝑂 𝔅)
1715, 16syl6bb 275 . . . . . . 7 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ 𝑓:𝑂 𝔅))
18 ffn 5958 . . . . . . 7 (𝑓:𝑂 𝔅𝑓 Fn 𝑂)
1917, 18syl6bi 242 . . . . . 6 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) → 𝑓 Fn 𝑂))
20 elpreima 6245 . . . . . . . . . 10 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) ↔ (𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥)))
21 simpl 472 . . . . . . . . . 10 ((𝑦𝑂 ∧ (𝑓𝑦) ∈ 𝑥) → 𝑦𝑂)
2220, 21syl6bi 242 . . . . . . . . 9 (𝑓 Fn 𝑂 → (𝑦 ∈ (𝑓𝑥) → 𝑦𝑂))
2322ssrdv 3574 . . . . . . . 8 (𝑓 Fn 𝑂 → (𝑓𝑥) ⊆ 𝑂)
24 vex 3176 . . . . . . . . . . 11 𝑓 ∈ V
2524cnvex 7006 . . . . . . . . . 10 𝑓 ∈ V
26 imaexg 6995 . . . . . . . . . 10 (𝑓 ∈ V → (𝑓𝑥) ∈ V)
2725, 26ax-mp 5 . . . . . . . . 9 (𝑓𝑥) ∈ V
2827elpw 4114 . . . . . . . 8 ((𝑓𝑥) ∈ 𝒫 𝑂 ↔ (𝑓𝑥) ⊆ 𝑂)
2923, 28sylibr 223 . . . . . . 7 (𝑓 Fn 𝑂 → (𝑓𝑥) ∈ 𝒫 𝑂)
3029ralrimivw 2950 . . . . . 6 (𝑓 Fn 𝑂 → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)
3119, 30syl6 34 . . . . 5 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) → ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂))
3231pm4.71d 664 . . . 4 (𝑂𝑉 → (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ↔ (𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅 (𝑓𝑥) ∈ 𝒫 𝑂)))
337, 32bitr4d 270 . . 3 (𝑂𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅) ↔ 𝑓 ∈ ( 𝔅𝑚 𝒫 𝑂)))
3433eqrdv 2608 . 2 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = ( 𝔅𝑚 𝒫 𝑂))
358, 11oveq12i 6561 . 2 ( 𝔅𝑚 𝒫 𝑂) = (ℝ ↑𝑚 𝑂)
3634, 35syl6eq 2660 1 (𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑𝑚 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372  ccnv 5037  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cr 9814  sigAlgebracsiga 29497  𝔅cbrsiga 29571  MblFnMcmbfm 29639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-topgen 15927  df-top 20521  df-bases 20522  df-siga 29498  df-sigagen 29529  df-brsiga 29572  df-mbfm 29640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator