Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmbfm Structured version   Visualization version   GIF version

Theorem mbfmbfm 29647
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Hypotheses
Ref Expression
mbfmbfm.1 (𝜑𝑀 ran measures)
mbfmbfm.2 (𝜑𝐽 ∈ Top)
mbfmbfm.3 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
Assertion
Ref Expression
mbfmbfm (𝜑𝐹 ran MblFnM)

Proof of Theorem mbfmbfm
StepHypRef Expression
1 mbfmbfm.1 . . 3 (𝜑𝑀 ran measures)
2 measbasedom 29592 . . . 4 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
32biimpi 205 . . 3 (𝑀 ran measures → 𝑀 ∈ (measures‘dom 𝑀))
4 measbase 29587 . . 3 (𝑀 ∈ (measures‘dom 𝑀) → dom 𝑀 ran sigAlgebra)
51, 3, 43syl 18 . 2 (𝜑 → dom 𝑀 ran sigAlgebra)
6 mbfmbfm.2 . . 3 (𝜑𝐽 ∈ Top)
76sgsiga 29532 . 2 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
8 mbfmbfm.3 . 2 (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))
95, 7, 8isanmbfm 29645 1 (𝜑𝐹 ran MblFnM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977   cuni 4372  dom cdm 5038  ran crn 5039  cfv 5804  (class class class)co 6549  Topctop 20517  sigAlgebracsiga 29497  sigaGencsigagen 29528  measurescmeas 29585  MblFnMcmbfm 29639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-esum 29417  df-siga 29498  df-sigagen 29529  df-meas 29586  df-mbfm 29640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator