MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflim Structured version   Visualization version   GIF version

Theorem mbflim 23241
Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (ℤ𝑀)
mbflim.2 (𝜑𝑀 ∈ ℤ)
mbflim.4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
mbflim.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflim.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
Assertion
Ref Expression
mbflim (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐶(𝑥,𝑛)   𝑀(𝑥,𝑛)   𝑉(𝑥,𝑛)

Proof of Theorem mbflim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . 3 𝑍 = (ℤ𝑀)
2 mbflim.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 mbflim.4 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
4 fvex 6113 . . . . . . 7 (ℤ𝑀) ∈ V
51, 4eqeltri 2684 . . . . . 6 𝑍 ∈ V
65mptex 6390 . . . . 5 (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V
76a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ∈ V)
82adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
9 mbflim.5 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
10 mbflim.6 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵𝑉)
1110anassrs 678 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵𝑉)
129, 11mbfmptcl 23210 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
1312an32s 842 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℂ)
14 eqid 2610 . . . . . 6 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1513, 14fmptd 6292 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℂ)
1615ffvelrnda 6267 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) ∈ ℂ)
17 simpr 476 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
1813recld 13782 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘𝐵) ∈ ℝ)
19 eqid 2610 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℜ‘𝐵)) = (𝑛𝑍 ↦ (ℜ‘𝐵))
2019fvmpt2 6200 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
2117, 18, 20syl2anc 691 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘𝐵))
2214fvmpt2 6200 . . . . . . . . . 10 ((𝑛𝑍𝐵 ∈ ℂ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2317, 13, 22syl2anc 691 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
2423fveq2d 6107 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℜ‘((𝑛𝑍𝐵)‘𝑛)) = (ℜ‘𝐵))
2521, 24eqtr4d 2647 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
2625ralrimiva 2949 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
27 nffvmpt1 6111 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘)
28 nfcv 2751 . . . . . . . . 9 𝑛
29 nffvmpt1 6111 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑘)
3028, 29nffv 6110 . . . . . . . 8 𝑛(ℜ‘((𝑛𝑍𝐵)‘𝑘))
3127, 30nfeq 2762 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘))
32 nfv 1830 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))
33 fveq2 6103 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛))
34 fveq2 6103 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑛𝑍𝐵)‘𝑘) = ((𝑛𝑍𝐵)‘𝑛))
3534fveq2d 6107 . . . . . . . 8 (𝑘 = 𝑛 → (ℜ‘((𝑛𝑍𝐵)‘𝑘)) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3633, 35eqeq12d 2625 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛))))
3731, 32, 36cbvral 3143 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑛) = (ℜ‘((𝑛𝑍𝐵)‘𝑛)))
3826, 37sylibr 223 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
3938r19.21bi 2916 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℜ‘𝐵))‘𝑘) = (ℜ‘((𝑛𝑍𝐵)‘𝑘)))
401, 3, 7, 8, 16, 39climre 14184 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℜ‘𝐵)) ⇝ (ℜ‘𝐶))
4112ismbfcn2 23212 . . . . 5 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
429, 41mpbid 221 . . . 4 ((𝜑𝑛𝑍) → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4342simpld 474 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4412anasss 677 . . . 4 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℂ)
4544recld 13782 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℜ‘𝐵) ∈ ℝ)
461, 2, 40, 43, 45mbflimlem 23240 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
475mptex 6390 . . . . 5 (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V
4847a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ∈ V)
4913imcld 13783 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘𝐵) ∈ ℝ)
50 eqid 2610 . . . . . . . . . 10 (𝑛𝑍 ↦ (ℑ‘𝐵)) = (𝑛𝑍 ↦ (ℑ‘𝐵))
5150fvmpt2 6200 . . . . . . . . 9 ((𝑛𝑍 ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5217, 49, 51syl2anc 691 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘𝐵))
5323fveq2d 6107 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (ℑ‘((𝑛𝑍𝐵)‘𝑛)) = (ℑ‘𝐵))
5452, 53eqtr4d 2647 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
5554ralrimiva 2949 . . . . . 6 ((𝜑𝑥𝐴) → ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
56 nffvmpt1 6111 . . . . . . . 8 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘)
57 nfcv 2751 . . . . . . . . 9 𝑛
5857, 29nffv 6110 . . . . . . . 8 𝑛(ℑ‘((𝑛𝑍𝐵)‘𝑘))
5956, 58nfeq 2762 . . . . . . 7 𝑛((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘))
60 nfv 1830 . . . . . . 7 𝑘((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))
61 fveq2 6103 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛))
6234fveq2d 6107 . . . . . . . 8 (𝑘 = 𝑛 → (ℑ‘((𝑛𝑍𝐵)‘𝑘)) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6361, 62eqeq12d 2625 . . . . . . 7 (𝑘 = 𝑛 → (((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛))))
6459, 60, 63cbvral 3143 . . . . . 6 (∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)) ↔ ∀𝑛𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑛) = (ℑ‘((𝑛𝑍𝐵)‘𝑛)))
6555, 64sylibr 223 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑘𝑍 ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
6665r19.21bi 2916 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍 ↦ (ℑ‘𝐵))‘𝑘) = (ℑ‘((𝑛𝑍𝐵)‘𝑘)))
671, 3, 48, 8, 16, 66climim 14185 . . 3 ((𝜑𝑥𝐴) → (𝑛𝑍 ↦ (ℑ‘𝐵)) ⇝ (ℑ‘𝐶))
6842simprd 478 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
6944imcld 13783 . . 3 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → (ℑ‘𝐵) ∈ ℝ)
701, 2, 67, 68, 69mbflimlem 23240 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
71 climcl 14078 . . . 4 ((𝑛𝑍𝐵) ⇝ 𝐶𝐶 ∈ ℂ)
723, 71syl 17 . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7372ismbfcn2 23212 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
7446, 70, 73mpbir2and 959 1 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  cc 9813  cr 9814  cz 11254  cuz 11563  cre 13685  cim 13686  cli 14063  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194
This theorem is referenced by:  mbfmullem2  23297  mbfulm  23964
  Copyright terms: Public domain W3C validator