Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaicc Structured version   Visualization version   GIF version

Theorem mbfimaicc 23206
 Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
mbfimaicc (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) ∈ dom vol)

Proof of Theorem mbfimaicc
StepHypRef Expression
1 iccssre 12126 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
21adantl 481 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) ⊆ ℝ)
3 dfss4 3820 . . . . . 6 ((𝐵[,]𝐶) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶))
42, 3sylib 207 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶))
5 difreicc 12175 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))
65adantl 481 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))
76difeq2d 3690 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))
84, 7eqtr3d 2646 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))
98imaeq2d 5385 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) = (𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
10 ffun 5961 . . . . . 6 (𝐹:𝐴⟶ℝ → Fun 𝐹)
11 funcnvcnv 5870 . . . . . 6 (Fun 𝐹 → Fun 𝐹)
1210, 11syl 17 . . . . 5 (𝐹:𝐴⟶ℝ → Fun 𝐹)
1312ad2antlr 759 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → Fun 𝐹)
14 imadif 5887 . . . 4 (Fun 𝐹 → (𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
1513, 14syl 17 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
169, 15eqtrd 2644 . 2 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))))
17 fimacnv 6255 . . . . . 6 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
1817adantl 481 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ℝ) = 𝐴)
19 mbfdm 23201 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
20 fdm 5964 . . . . . . . 8 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
2120eleq1d 2672 . . . . . . 7 (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol))
2221biimpac 502 . . . . . 6 ((dom 𝐹 ∈ dom vol ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol)
2319, 22sylan 487 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol)
2418, 23eqeltrd 2688 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ℝ) ∈ dom vol)
25 imaundi 5464 . . . . 5 (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) = ((𝐹 “ (-∞(,)𝐵)) ∪ (𝐹 “ (𝐶(,)+∞)))
26 mbfima 23205 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)𝐵)) ∈ dom vol)
27 mbfima 23205 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝐶(,)+∞)) ∈ dom vol)
28 unmbl 23112 . . . . . 6 (((𝐹 “ (-∞(,)𝐵)) ∈ dom vol ∧ (𝐹 “ (𝐶(,)+∞)) ∈ dom vol) → ((𝐹 “ (-∞(,)𝐵)) ∪ (𝐹 “ (𝐶(,)+∞))) ∈ dom vol)
2926, 27, 28syl2anc 691 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ (-∞(,)𝐵)) ∪ (𝐹 “ (𝐶(,)+∞))) ∈ dom vol)
3025, 29syl5eqel 2692 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol)
31 difmbl 23118 . . . 4 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol)
3224, 30, 31syl2anc 691 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol)
3332adantr 480 . 2 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol)
3416, 33eqeltrd 2688 1 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐹 “ (𝐵[,]𝐶)) ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537   ∪ cun 3538   ⊆ wss 3540  ◡ccnv 5037  dom cdm 5038   “ cima 5041  Fun wfun 5798  ⟶wf 5800  (class class class)co 6549  ℝcr 9814  +∞cpnf 9950  -∞cmnf 9951  (,)cioo 12046  [,]cicc 12049  volcvol 23039  MblFncmbf 23189 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194 This theorem is referenced by:  mbfimasn  23207
 Copyright terms: Public domain W3C validator