Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flim Structured version   Visualization version   GIF version

Theorem mbfi1flim 23296
 Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1 (𝜑𝐹 ∈ MblFn)
mbfi1flim.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
mbfi1flim (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐴   𝑔,𝐹,𝑛,𝑥   𝜑,𝑔,𝑛,𝑥

Proof of Theorem mbfi1flim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iftrue 4042 . . . . . . . 8 (𝑦𝐴 → if(𝑦𝐴, (𝐹𝑦), 0) = (𝐹𝑦))
21mpteq2ia 4668 . . . . . . 7 (𝑦𝐴 ↦ if(𝑦𝐴, (𝐹𝑦), 0)) = (𝑦𝐴 ↦ (𝐹𝑦))
3 mbfi1flim.2 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℝ)
43feqmptd 6159 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
5 mbfi1flim.1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
64, 5eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ MblFn)
72, 6syl5eqel 2692 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ if(𝑦𝐴, (𝐹𝑦), 0)) ∈ MblFn)
8 fvex 6113 . . . . . . . 8 (𝐹𝑦) ∈ V
9 c0ex 9913 . . . . . . . 8 0 ∈ V
108, 9ifex 4106 . . . . . . 7 if(𝑦𝐴, (𝐹𝑦), 0) ∈ V
1110a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → if(𝑦𝐴, (𝐹𝑦), 0) ∈ V)
127, 11mbfdm2 23211 . . . . 5 (𝜑𝐴 ∈ dom vol)
13 mblss 23106 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1412, 13syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
15 rembl 23115 . . . . 5 ℝ ∈ dom vol
1615a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
17 eldifn 3695 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → ¬ 𝑦𝐴)
1817adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑦𝐴)
1918iffalsed 4047 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → if(𝑦𝐴, (𝐹𝑦), 0) = 0)
2014, 16, 11, 19, 7mbfss 23219 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)) ∈ MblFn)
213ffvelrnda 6267 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
22 0red 9920 . . . . . 6 ((𝜑 ∧ ¬ 𝑦𝐴) → 0 ∈ ℝ)
2321, 22ifclda 4070 . . . . 5 (𝜑 → if(𝑦𝐴, (𝐹𝑦), 0) ∈ ℝ)
2423adantr 480 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(𝑦𝐴, (𝐹𝑦), 0) ∈ ℝ)
25 eqid 2610 . . . 4 (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))
2624, 25fmptd 6292 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)):ℝ⟶ℝ)
2720, 26mbfi1flimlem 23295 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
28 ssralv 3629 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
2914, 28syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
3014sselda 3568 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
31 eleq1 2676 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
32 fveq2 6103 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3331, 32ifbieq1d 4059 . . . . . . . . . 10 (𝑦 = 𝑥 → if(𝑦𝐴, (𝐹𝑦), 0) = if(𝑥𝐴, (𝐹𝑥), 0))
34 fvex 6113 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
3534, 9ifex 4106 . . . . . . . . . 10 if(𝑥𝐴, (𝐹𝑥), 0) ∈ V
3633, 25, 35fvmpt 6191 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = if(𝑥𝐴, (𝐹𝑥), 0))
3730, 36syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = if(𝑥𝐴, (𝐹𝑥), 0))
38 iftrue 4042 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, (𝐹𝑥), 0) = (𝐹𝑥))
3938adantl 481 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, (𝐹𝑥), 0) = (𝐹𝑥))
4037, 39eqtrd 2644 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = (𝐹𝑥))
4140breq2d 4595 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4241ralbidva 2968 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) ↔ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4329, 42sylibd 228 . . . 4 (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4443anim2d 587 . . 3 (𝜑 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
4544eximdv 1833 . 2 (𝜑 → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
4627, 45mpd 15 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  ℝcr 9814  0cc0 9815  ℕcn 10897   ⇝ cli 14063  volcvol 23039  MblFncmbf 23189  ∫1citg1 23190 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-0p 23243 This theorem is referenced by:  mbfmullem  23298
 Copyright terms: Public domain W3C validator