Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  matval Structured version   Visualization version   GIF version

Theorem matval 20036
 Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matval.a 𝐴 = (𝑁 Mat 𝑅)
matval.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
matval.t · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
matval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))

Proof of Theorem matval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matval.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 elex 3185 . . 3 (𝑅𝑉𝑅 ∈ V)
3 id 22 . . . . . . 7 (𝑟 = 𝑅𝑟 = 𝑅)
4 id 22 . . . . . . . 8 (𝑛 = 𝑁𝑛 = 𝑁)
54sqxpeqd 5065 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 × 𝑛) = (𝑁 × 𝑁))
63, 5oveqan12rd 6569 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = (𝑅 freeLMod (𝑁 × 𝑁)))
7 matval.g . . . . . 6 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
86, 7syl6eqr 2662 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = 𝐺)
94, 4, 4oteq123d 4355 . . . . . . . 8 (𝑛 = 𝑁 → ⟨𝑛, 𝑛, 𝑛⟩ = ⟨𝑁, 𝑁, 𝑁⟩)
103, 9oveqan12rd 6569 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
11 matval.t . . . . . . 7 · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
1210, 11syl6eqr 2662 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = · )
1312opeq2d 4347 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩ = ⟨(.r‘ndx), · ⟩)
148, 13oveq12d 6567 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
15 df-mat 20033 . . . 4 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
16 ovex 6577 . . . 4 (𝐺 sSet ⟨(.r‘ndx), · ⟩) ∈ V
1714, 15, 16ovmpt2a 6689 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
182, 17sylan2 490 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
191, 18syl5eq 2656 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ⟨cop 4131  ⟨cotp 4133   × cxp 5036  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ndxcnx 15692   sSet csts 15693  .rcmulr 15769   freeLMod cfrlm 19909   maMul cmmul 20008   Mat cmat 20032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-ot 4134  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-mat 20033 This theorem is referenced by:  matbas  20038  matplusg  20039  matsca  20040  matvsca  20041  matmulr  20063
 Copyright terms: Public domain W3C validator