MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsum Structured version   Visualization version   GIF version

Theorem matgsum 20062
Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.)
Hypotheses
Ref Expression
matgsum.a 𝐴 = (𝑁 Mat 𝑅)
matgsum.b 𝐵 = (Base‘𝐴)
matgsum.z 0 = (0g𝐴)
matgsum.i (𝜑𝑁 ∈ Fin)
matgsum.j (𝜑𝐽𝑊)
matgsum.r (𝜑𝑅 ∈ Ring)
matgsum.f ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
matgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
Assertion
Ref Expression
matgsum (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑖,𝐽,𝑗,𝑦   𝑖,𝑁,𝑗,𝑦   𝑅,𝑖,𝑗,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐴(𝑦,𝑖,𝑗)   𝐵(𝑦,𝑖,𝑗)   𝑈(𝑦,𝑖,𝑗)   𝑊(𝑦,𝑖,𝑗)   0 (𝑦,𝑖,𝑗)

Proof of Theorem matgsum
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 matgsum.j . . . 4 (𝜑𝐽𝑊)
2 mptexg 6389 . . . 4 (𝐽𝑊 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) ∈ V)
31, 2syl 17 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) ∈ V)
4 matgsum.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 ovex 6577 . . . . 5 (𝑁 Mat 𝑅) ∈ V
64, 5eqeltri 2684 . . . 4 𝐴 ∈ V
76a1i 11 . . 3 (𝜑𝐴 ∈ V)
8 ovex 6577 . . . 4 (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V
98a1i 11 . . 3 (𝜑 → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V)
10 matgsum.i . . . . 5 (𝜑𝑁 ∈ Fin)
11 matgsum.r . . . . 5 (𝜑𝑅 ∈ Ring)
12 eqid 2610 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
134, 12matbas 20038 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
1410, 11, 13syl2anc 691 . . . 4 (𝜑 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
1514eqcomd 2616 . . 3 (𝜑 → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
164, 12matplusg 20039 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
1710, 11, 16syl2anc 691 . . . 4 (𝜑 → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
1817eqcomd 2616 . . 3 (𝜑 → (+g𝐴) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))))
193, 7, 9, 15, 18gsumpropd 17095 . 2 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))))
20 mpt2mpts 7123 . . . . . 6 (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
2120a1i 11 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
2221mpteq2dv 4673 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) = (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)))
2322oveq2d 6565 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
24 eqid 2610 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
25 eqid 2610 . . . 4 (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁)))
26 xpfi 8116 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
2710, 10, 26syl2anc 691 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ Fin)
28 matgsum.f . . . . . 6 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
29 matgsum.b . . . . . 6 𝐵 = (Base‘𝐴)
3028, 29syl6eleq 2698 . . . . 5 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ (Base‘𝐴))
3120eqcomi 2619 . . . . . 6 (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈)
3231a1i 11 . . . . 5 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈))
3310, 11jca 553 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3433adantr 480 . . . . . 6 ((𝜑𝑦𝐽) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3534, 13syl 17 . . . . 5 ((𝜑𝑦𝐽) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3630, 32, 353eltr4d 2703 . . . 4 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
37 matgsum.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
3831mpteq2i 4669 . . . . . 6 (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))
39 matgsum.z . . . . . . 7 0 = (0g𝐴)
4039eqcomi 2619 . . . . . 6 (0g𝐴) = 0
4137, 38, 403brtr4g 4617 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g𝐴))
424, 12mat0 20042 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
4310, 11, 42syl2anc 691 . . . . 5 (𝜑 → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
4441, 43breqtrrd 4611 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g‘(𝑅 freeLMod (𝑁 × 𝑁))))
4512, 24, 25, 27, 1, 11, 36, 44frlmgsum 19930 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
4623, 45eqtrd 2644 . 2 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
47 fvex 6113 . . . . . . . 8 (2nd𝑧) ∈ V
48 csbov2g 6589 . . . . . . . 8 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
4947, 48ax-mp 5 . . . . . . 7 (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
5049csbeq2i 3945 . . . . . 6 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
51 fvex 6113 . . . . . . 7 (1st𝑧) ∈ V
52 csbov2g 6589 . . . . . . 7 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
5351, 52ax-mp 5 . . . . . 6 (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈))
54 csbmpt2 4935 . . . . . . . . . 10 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈))
5547, 54ax-mp 5 . . . . . . . . 9 (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈)
5655csbeq2i 3945 . . . . . . . 8 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈)
57 csbmpt2 4935 . . . . . . . . 9 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5851, 57ax-mp 5 . . . . . . . 8 (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5956, 58eqtri 2632 . . . . . . 7 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
6059oveq2i 6560 . . . . . 6 (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
6150, 53, 603eqtrri 2637 . . . . 5 (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈))
6261mpteq2i 4669 . . . 4 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
63 mpt2mpts 7123 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
6462, 63eqtr4i 2635 . . 3 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈)))
6564a1i 11 . 2 (𝜑 → (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
6619, 46, 653eqtrd 2648 1 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499   class class class wbr 4583  cmpt 4643   × cxp 5036  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Ringcrg 18370   freeLMod cfrlm 19909   Mat cmat 20032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mat 20033
This theorem is referenced by:  decpmatmul  20396  pmatcollpw2  20402
  Copyright terms: Public domain W3C validator