Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matbas0pc | Structured version Visualization version GIF version |
Description: There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018.) |
Ref | Expression |
---|---|
matbas0pc | ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mat 20033 | . . . . 5 ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | |
2 | 1 | reldmmpt2 6669 | . . . 4 ⊢ Rel dom Mat |
3 | 2 | ovprc 6581 | . . 3 ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
4 | 3 | fveq2d 6107 | . 2 ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = (Base‘∅)) |
5 | base0 15740 | . 2 ⊢ ∅ = (Base‘∅) | |
6 | 4, 5 | syl6eqr 2662 | 1 ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∅c0 3874 〈cop 4131 〈cotp 4133 × cxp 5036 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 ndxcnx 15692 sSet csts 15693 Basecbs 15695 .rcmulr 15769 freeLMod cfrlm 19909 maMul cmmul 20008 Mat cmat 20032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-slot 15699 df-base 15700 df-mat 20033 |
This theorem is referenced by: marrepfval 20185 marepvfval 20190 submafval 20204 minmar1fval 20271 |
Copyright terms: Public domain | W3C validator |