MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatf1 Structured version   Visualization version   GIF version

Theorem mat2pmatf1 20353
Description: The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)

Proof of Theorem mat2pmatf1
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatbas.b . . 3 𝐵 = (Base‘𝐴)
4 mat2pmatbas.p . . 3 𝑃 = (Poly1𝑅)
5 mat2pmatbas.c . . 3 𝐶 = (𝑁 Mat 𝑃)
6 mat2pmatbas0.h . . 3 𝐻 = (Base‘𝐶)
71, 2, 3, 4, 5, 6mat2pmatf 20352 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐻)
8 simpl 472 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
98anim2i 591 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
10 df-3an 1033 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
119, 10sylibr 223 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
12 eqid 2610 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘𝑃)
131, 2, 3, 4, 12mat2pmatvalel 20349 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
1411, 13sylan 487 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
15 simpr 476 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
1615anim2i 591 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
17 df-3an 1033 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
1816, 17sylibr 223 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
191, 2, 3, 4, 12mat2pmatvalel 20349 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2018, 19sylan 487 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2114, 20eqeq12d 2625 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) ↔ ((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
22 eqid 2610 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2610 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
244, 12, 22, 23ply1sclf1 19480 . . . . . . . 8 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
2524ad3antlr 763 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
26 simprl 790 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
27 simprr 792 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
28 simplrl 796 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥𝐵)
292, 22, 3, 26, 27, 28matecld 20051 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
30 simplrr 797 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦𝐵)
312, 22, 3, 26, 27, 30matecld 20051 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
32 f1veqaeq 6418 . . . . . . 7 (((algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃) ∧ ((𝑖𝑥𝑗) ∈ (Base‘𝑅) ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3325, 29, 31, 32syl12anc 1316 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3421, 33sylbid 229 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3534ralimdvva 2947 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
361, 2, 3, 4, 5, 6mat2pmatbas0 20351 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) ∈ 𝐻)
3711, 36syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) ∈ 𝐻)
381, 2, 3, 4, 5, 6mat2pmatbas0 20351 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) ∈ 𝐻)
3918, 38syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) ∈ 𝐻)
405, 6eqmat 20049 . . . . 5 (((𝑇𝑥) ∈ 𝐻 ∧ (𝑇𝑦) ∈ 𝐻) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
4137, 39, 40syl2anc 691 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
422, 3eqmat 20049 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4342adantl 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4435, 41, 433imtr4d 282 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4544ralrimivva 2954 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
46 dff13 6416 . 2 (𝑇:𝐵1-1𝐻 ↔ (𝑇:𝐵𝐻 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
477, 45, 46sylanbrc 695 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  Ringcrg 18370  algSccascl 19132  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-mat2pmat 20331
This theorem is referenced by:  m2cpmf1  20367
  Copyright terms: Public domain W3C validator