Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepval0 Structured version   Visualization version   GIF version

Theorem marrepval0 20186
 Description: Second substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a 𝐴 = (𝑁 Mat 𝑅)
marrepfval.b 𝐵 = (Base‘𝐴)
marrepfval.q 𝑄 = (𝑁 matRRep 𝑅)
marrepfval.z 0 = (0g𝑅)
Assertion
Ref Expression
marrepval0 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘,𝑙   𝑅,𝑖,𝑗,𝑘,𝑙   𝑖,𝑀,𝑗,𝑘,𝑙   𝑆,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑙)   0 (𝑖,𝑗,𝑘,𝑙)

Proof of Theorem marrepval0
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 marrepfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 20037 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 474 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
54, 4jca 553 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
65adantr 480 . . 3 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
7 mpt2exga 7135 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V)
86, 7syl 17 . 2 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V)
9 ifeq1 4040 . . . . . . 7 (𝑠 = 𝑆 → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 ))
109adantl 481 . . . . . 6 ((𝑚 = 𝑀𝑠 = 𝑆) → if(𝑗 = 𝑙, 𝑠, 0 ) = if(𝑗 = 𝑙, 𝑆, 0 ))
11 oveq 6555 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
1211adantr 480 . . . . . 6 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
1310, 12ifeq12d 4056 . . . . 5 ((𝑚 = 𝑀𝑠 = 𝑆) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))
1413mpt2eq3dv 6619 . . . 4 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))
1514mpt2eq3dv 6619 . . 3 ((𝑚 = 𝑀𝑠 = 𝑆) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
16 marrepfval.q . . . 4 𝑄 = (𝑁 matRRep 𝑅)
17 marrepfval.z . . . 4 0 = (0g𝑅)
181, 2, 16, 17marrepfval 20185 . . 3 𝑄 = (𝑚𝐵, 𝑠 ∈ (Base‘𝑅) ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, 0 ), (𝑖𝑚𝑗)))))
1915, 18ovmpt2ga 6688 . 2 ((𝑀𝐵𝑆 ∈ (Base‘𝑅) ∧ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
208, 19mpd3an3 1417 1 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ifcif 4036  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  Basecbs 15695  0gc0g 15923   Mat cmat 20032   matRRep cmarrep 20181 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-slot 15699  df-base 15700  df-mat 20033  df-marrep 20183 This theorem is referenced by:  marrepval  20187  minmar1marrep  20275
 Copyright terms: Public domain W3C validator