Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Structured version   Visualization version   GIF version

Theorem mapex 7750
 Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
Assertion
Ref Expression
mapex ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapex
StepHypRef Expression
1 fssxp 5973 . . . 4 (𝑓:𝐴𝐵𝑓 ⊆ (𝐴 × 𝐵))
21ss2abi 3637 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
3 df-pw 4110 . . 3 𝒫 (𝐴 × 𝐵) = {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
42, 3sseqtr4i 3601 . 2 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
5 xpexg 6858 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
6 pwexg 4776 . . 3 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
75, 6syl 17 . 2 ((𝐴𝐶𝐵𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V)
8 ssexg 4732 . 2 (({𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
94, 7, 8sylancr 694 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977  {cab 2596  Vcvv 3173   ⊆ wss 3540  𝒫 cpw 4108   × cxp 5036  ⟶wf 5800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808 This theorem is referenced by:  fnmap  7751  mapvalg  7754  isghm  17483  wlks  26047  wlkres  26050  trls  26066  crcts  26150  cycls  26151  measbase  29587  measval  29588  ismeas  29589  isrnmeas  29590  cnfex  38210  opabresexd  40332  1wlksfval  40811  wlksfval  40812
 Copyright terms: Public domain W3C validator