Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem9 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 36013. Baer p. 45, line 4: "...so that x would consequently belong to Fy." (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
mapdpglem4.g0 | ⊢ (𝜑 → 𝑔 = 0 ) |
Ref | Expression |
---|---|
mapdpglem9 | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdpglem.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 35417 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | mapdpglem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | mapdpglem.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | mapdpglem.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
8 | eqid 2610 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
9 | mapdpglem.s | . . . 4 ⊢ − = (-g‘𝑈) | |
10 | 7, 8, 9 | lmodvnpcan 18740 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 − 𝑌)(+g‘𝑈)𝑌) = 𝑋) |
11 | 4, 5, 6, 10 | syl3anc 1318 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌)(+g‘𝑈)𝑌) = 𝑋) |
12 | eqid 2610 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
13 | mapdpglem.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
14 | 7, 12, 13 | lspsncl 18798 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
15 | 4, 6, 14 | syl2anc 691 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
16 | mapdpglem.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
17 | mapdpglem.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
18 | mapdpglem1.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐶) | |
19 | mapdpglem2.j | . . . . 5 ⊢ 𝐽 = (LSpan‘𝐶) | |
20 | mapdpglem3.f | . . . . 5 ⊢ 𝐹 = (Base‘𝐶) | |
21 | mapdpglem3.te | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
22 | mapdpglem3.a | . . . . 5 ⊢ 𝐴 = (Scalar‘𝑈) | |
23 | mapdpglem3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
24 | mapdpglem3.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐶) | |
25 | mapdpglem3.r | . . . . 5 ⊢ 𝑅 = (-g‘𝐶) | |
26 | mapdpglem3.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
27 | mapdpglem3.e | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
28 | mapdpglem4.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑈) | |
29 | mapdpglem.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
30 | mapdpglem4.jt | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
31 | mapdpglem4.z | . . . . 5 ⊢ 0 = (0g‘𝐴) | |
32 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
33 | mapdpglem4.z4 | . . . . 5 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
34 | mapdpglem4.t4 | . . . . 5 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
35 | mapdpglem4.xn | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
36 | mapdpglem4.g0 | . . . . 5 ⊢ (𝜑 → 𝑔 = 0 ) | |
37 | 1, 16, 2, 7, 9, 13, 17, 3, 5, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 | mapdpglem8 35986 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) ⊆ (𝑁‘{𝑌})) |
38 | 7, 9 | lmodvsubcl 18731 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
39 | 4, 5, 6, 38 | syl3anc 1318 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑉) |
40 | 7, 13 | lspsnid 18814 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ (𝑋 − 𝑌) ∈ 𝑉) → (𝑋 − 𝑌) ∈ (𝑁‘{(𝑋 − 𝑌)})) |
41 | 4, 39, 40 | syl2anc 691 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝑁‘{(𝑋 − 𝑌)})) |
42 | 37, 41 | sseldd 3569 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝑁‘{𝑌})) |
43 | 7, 13 | lspsnid 18814 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑌})) |
44 | 4, 6, 43 | syl2anc 691 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑌})) |
45 | 8, 12 | lssvacl 18775 | . . 3 ⊢ (((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) ∧ ((𝑋 − 𝑌) ∈ (𝑁‘{𝑌}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → ((𝑋 − 𝑌)(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑌})) |
46 | 4, 15, 42, 44, 45 | syl22anc 1319 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌)(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑌})) |
47 | 11, 46 | eqeltrrd 2689 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 {csn 4125 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 Scalarcsca 15771 ·𝑠 cvsca 15772 0gc0g 15923 -gcsg 17247 LSSumclsm 17872 LModclmod 18686 LSubSpclss 18753 LSpanclspn 18792 HLchlt 33655 LHypclh 34288 DVecHcdvh 35385 LCDualclcd 35893 mapdcmpd 35931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-riotaBAD 33257 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-undef 7286 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-0g 15925 df-mre 16069 df-mrc 16070 df-acs 16072 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-cntz 17573 df-oppg 17599 df-lsm 17874 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lvec 18924 df-lsatoms 33281 df-lshyp 33282 df-lcv 33324 df-lfl 33363 df-lkr 33391 df-ldual 33429 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 df-lvols 33804 df-lines 33805 df-psubsp 33807 df-pmap 33808 df-padd 34100 df-lhyp 34292 df-laut 34293 df-ldil 34408 df-ltrn 34409 df-trl 34464 df-tgrp 35049 df-tendo 35061 df-edring 35063 df-dveca 35309 df-disoa 35336 df-dvech 35386 df-dib 35446 df-dic 35480 df-dih 35536 df-doch 35655 df-djh 35702 df-lcdual 35894 df-mapd 35932 |
This theorem is referenced by: mapdpglem10 35988 |
Copyright terms: Public domain | W3C validator |