Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem14 Structured version   Visualization version   GIF version

Theorem mapdpglem14 35992
Description: Lemma for mapdpg 36013. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem12.g0 (𝜑𝑧 = (0g𝐶))
Assertion
Ref Expression
mapdpglem14 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem14
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 35417 . . 3 (𝜑𝑈 ∈ LMod)
5 mapdpglem.y . . 3 (𝜑𝑌𝑉)
6 mapdpglem.x . . 3 (𝜑𝑋𝑉)
7 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2610 . . . 4 (+g𝑈) = (+g𝑈)
9 mapdpglem.s . . . 4 = (-g𝑈)
107, 8, 9lmodvnpcan 18740 . . 3 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → ((𝑌 𝑋)(+g𝑈)𝑋) = 𝑌)
114, 5, 6, 10syl3anc 1318 . 2 (𝜑 → ((𝑌 𝑋)(+g𝑈)𝑋) = 𝑌)
12 eqid 2610 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
13 mapdpglem.n . . . . 5 𝑁 = (LSpan‘𝑈)
147, 12, 13lspsncl 18798 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
154, 6, 14syl2anc 691 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
16 lmodgrp 18693 . . . . . 6 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
174, 16syl 17 . . . . 5 (𝜑𝑈 ∈ Grp)
18 eqid 2610 . . . . . 6 (invg𝑈) = (invg𝑈)
197, 9, 18grpinvsub 17320 . . . . 5 ((𝑈 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → ((invg𝑈)‘(𝑋 𝑌)) = (𝑌 𝑋))
2017, 6, 5, 19syl3anc 1318 . . . 4 (𝜑 → ((invg𝑈)‘(𝑋 𝑌)) = (𝑌 𝑋))
21 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
22 mapdpglem.c . . . . . . 7 𝐶 = ((LCDual‘𝐾)‘𝑊)
23 mapdpglem1.p . . . . . . 7 = (LSSum‘𝐶)
24 mapdpglem2.j . . . . . . 7 𝐽 = (LSpan‘𝐶)
25 mapdpglem3.f . . . . . . 7 𝐹 = (Base‘𝐶)
26 mapdpglem3.te . . . . . . 7 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
27 mapdpglem3.a . . . . . . 7 𝐴 = (Scalar‘𝑈)
28 mapdpglem3.b . . . . . . 7 𝐵 = (Base‘𝐴)
29 mapdpglem3.t . . . . . . 7 · = ( ·𝑠𝐶)
30 mapdpglem3.r . . . . . . 7 𝑅 = (-g𝐶)
31 mapdpglem3.g . . . . . . 7 (𝜑𝐺𝐹)
32 mapdpglem3.e . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
33 mapdpglem4.q . . . . . . 7 𝑄 = (0g𝑈)
34 mapdpglem.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
35 mapdpglem4.jt . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
36 mapdpglem4.z . . . . . . 7 0 = (0g𝐴)
37 mapdpglem4.g4 . . . . . . 7 (𝜑𝑔𝐵)
38 mapdpglem4.z4 . . . . . . 7 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
39 mapdpglem4.t4 . . . . . . 7 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
40 mapdpglem4.xn . . . . . . 7 (𝜑𝑋𝑄)
41 mapdpglem12.yn . . . . . . 7 (𝜑𝑌𝑄)
42 mapdpglem12.g0 . . . . . . 7 (𝜑𝑧 = (0g𝐶))
431, 21, 2, 7, 9, 13, 22, 3, 6, 5, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42mapdpglem13 35991 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋}))
447, 9lmodvsubcl 18731 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
454, 6, 5, 44syl3anc 1318 . . . . . . 7 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
467, 13lspsnid 18814 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
474, 45, 46syl2anc 691 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
4843, 47sseldd 3569 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{𝑋}))
4912, 18lssvnegcl 18777 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈) ∧ (𝑋 𝑌) ∈ (𝑁‘{𝑋})) → ((invg𝑈)‘(𝑋 𝑌)) ∈ (𝑁‘{𝑋}))
504, 15, 48, 49syl3anc 1318 . . . 4 (𝜑 → ((invg𝑈)‘(𝑋 𝑌)) ∈ (𝑁‘{𝑋}))
5120, 50eqeltrrd 2689 . . 3 (𝜑 → (𝑌 𝑋) ∈ (𝑁‘{𝑋}))
527, 13lspsnid 18814 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
534, 6, 52syl2anc 691 . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
548, 12lssvacl 18775 . . 3 (((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) ∧ ((𝑌 𝑋) ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → ((𝑌 𝑋)(+g𝑈)𝑋) ∈ (𝑁‘{𝑋}))
554, 15, 51, 53, 54syl22anc 1319 . 2 (𝜑 → ((𝑌 𝑋)(+g𝑈)𝑋) ∈ (𝑁‘{𝑋}))
5611, 55eqeltrrd 2689 1 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  {csn 4125  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247  LSSumclsm 17872  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  LCDualclcd 35893  mapdcmpd 35931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lcv 33324  df-lfl 33363  df-lkr 33391  df-ldual 33429  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702  df-lcdual 35894  df-mapd 35932
This theorem is referenced by:  mapdpglem15  35993
  Copyright terms: Public domain W3C validator