Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6bN Structured version   Visualization version   GIF version

Theorem mapdh6bN 36044
Description: Lemmma for mapdh6N 36054. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6b.y (𝜑𝑌 = 0 )
mapdh6b.z (𝜑𝑍𝑉)
mapdh6b.ne (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
mapdh6bN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   + (𝑥,)   (𝑥,)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh6bN
StepHypRef Expression
1 mapdh.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 mapdh.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdh.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 35899 . . . 4 (𝜑𝐶 ∈ LMod)
5 lmodgrp 18693 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐶 ∈ Grp)
7 mapdh.q . . . 4 𝑄 = (0g𝐶)
8 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
9 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
10 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 mapdh.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdh.s . . . 4 = (-g𝑈)
13 mapdhc.o . . . 4 0 = (0g𝑈)
14 mapdh.n . . . 4 𝑁 = (LSpan‘𝑈)
15 mapdh.d . . . 4 𝐷 = (Base‘𝐶)
16 mapdh.r . . . 4 𝑅 = (-g𝐶)
17 mapdh.j . . . 4 𝐽 = (LSpan‘𝐶)
18 mapdhc.f . . . 4 (𝜑𝐹𝐷)
19 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21 mapdh6b.z . . . 4 (𝜑𝑍𝑉)
221, 10, 3dvhlvec 35416 . . . . . 6 (𝜑𝑈 ∈ LVec)
2320eldifad 3552 . . . . . 6 (𝜑𝑋𝑉)
24 mapdh6b.y . . . . . . 7 (𝜑𝑌 = 0 )
251, 10, 3dvhlmod 35417 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
2611, 13lmod0vcl 18715 . . . . . . . 8 (𝑈 ∈ LMod → 0𝑉)
2725, 26syl 17 . . . . . . 7 (𝜑0𝑉)
2824, 27eqeltrd 2688 . . . . . 6 (𝜑𝑌𝑉)
29 mapdh6b.ne . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
3011, 14, 22, 23, 28, 21, 29lspindpi 18953 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
3130simprd 478 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
327, 8, 1, 9, 10, 11, 12, 13, 14, 2, 15, 16, 17, 3, 18, 19, 20, 21, 31mapdhcl 36034 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
33 mapdh.a . . . 4 = (+g𝐶)
3415, 33, 7grplid 17275 . . 3 ((𝐶 ∈ Grp ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → (𝑄 (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
356, 32, 34syl2anc 691 . 2 (𝜑 → (𝑄 (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
3624oteq3d 4354 . . . . 5 (𝜑 → ⟨𝑋, 𝐹, 𝑌⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3736fveq2d 6107 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
387, 8, 13, 20, 18mapdhval0 36032 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3937, 38eqtrd 2644 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝑄)
4039oveq1d 6564 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝑄 (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
4124oveq1d 6564 . . . . 5 (𝜑 → (𝑌 + 𝑍) = ( 0 + 𝑍))
42 lmodgrp 18693 . . . . . . 7 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
4325, 42syl 17 . . . . . 6 (𝜑𝑈 ∈ Grp)
44 mapdh.p . . . . . . 7 + = (+g𝑈)
4511, 44, 13grplid 17275 . . . . . 6 ((𝑈 ∈ Grp ∧ 𝑍𝑉) → ( 0 + 𝑍) = 𝑍)
4643, 21, 45syl2anc 691 . . . . 5 (𝜑 → ( 0 + 𝑍) = 𝑍)
4741, 46eqtrd 2644 . . . 4 (𝜑 → (𝑌 + 𝑍) = 𝑍)
4847oteq3d 4354 . . 3 (𝜑 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 𝑍⟩)
4948fveq2d 6107 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
5035, 40, 493eqtr4rd 2655 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  ifcif 4036  {csn 4125  {cpr 4127  cotp 4133  cmpt 4643  cfv 5804  crio 6510  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  LModclmod 18686  LSpanclspn 18792  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  LCDualclcd 35893  mapdcmpd 35931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lcv 33324  df-lfl 33363  df-lkr 33391  df-ldual 33429  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702  df-lcdual 35894  df-mapd 35932
This theorem is referenced by:  mapdh6kN  36053
  Copyright terms: Public domain W3C validator