Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6bN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 36054. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh.p | ⊢ + = (+g‘𝑈) |
mapdh.a | ⊢ ✚ = (+g‘𝐶) |
mapdh6b.y | ⊢ (𝜑 → 𝑌 = 0 ) |
mapdh6b.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
mapdh6b.ne | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
Ref | Expression |
---|---|
mapdh6bN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | mapdh.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 35899 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | lmodgrp 18693 | . . . 4 ⊢ (𝐶 ∈ LMod → 𝐶 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Grp) |
7 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
8 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
9 | mapdh.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
10 | mapdh.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | mapdh.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
12 | mapdh.s | . . . 4 ⊢ − = (-g‘𝑈) | |
13 | mapdhc.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
14 | mapdh.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
15 | mapdh.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
16 | mapdh.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
17 | mapdh.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
18 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
19 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
20 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
21 | mapdh6b.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
22 | 1, 10, 3 | dvhlvec 35416 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
23 | 20 | eldifad 3552 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
24 | mapdh6b.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 = 0 ) | |
25 | 1, 10, 3 | dvhlmod 35417 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
26 | 11, 13 | lmod0vcl 18715 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
27 | 25, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑉) |
28 | 24, 27 | eqeltrd 2688 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
29 | mapdh6b.ne | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
30 | 11, 14, 22, 23, 28, 21, 29 | lspindpi 18953 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
31 | 30 | simprd 478 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
32 | 7, 8, 1, 9, 10, 11, 12, 13, 14, 2, 15, 16, 17, 3, 18, 19, 20, 21, 31 | mapdhcl 36034 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
33 | mapdh.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
34 | 15, 33, 7 | grplid 17275 | . . 3 ⊢ ((𝐶 ∈ Grp ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) → (𝑄 ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) |
35 | 6, 32, 34 | syl2anc 691 | . 2 ⊢ (𝜑 → (𝑄 ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) |
36 | 24 | oteq3d 4354 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝐹, 𝑌〉 = 〈𝑋, 𝐹, 0 〉) |
37 | 36 | fveq2d 6107 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
38 | 7, 8, 13, 20, 18 | mapdhval0 36032 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
39 | 37, 38 | eqtrd 2644 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝑄) |
40 | 39 | oveq1d 6564 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝑄 ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
41 | 24 | oveq1d 6564 | . . . . 5 ⊢ (𝜑 → (𝑌 + 𝑍) = ( 0 + 𝑍)) |
42 | lmodgrp 18693 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → 𝑈 ∈ Grp) | |
43 | 25, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Grp) |
44 | mapdh.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
45 | 11, 44, 13 | grplid 17275 | . . . . . 6 ⊢ ((𝑈 ∈ Grp ∧ 𝑍 ∈ 𝑉) → ( 0 + 𝑍) = 𝑍) |
46 | 43, 21, 45 | syl2anc 691 | . . . . 5 ⊢ (𝜑 → ( 0 + 𝑍) = 𝑍) |
47 | 41, 46 | eqtrd 2644 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) = 𝑍) |
48 | 47 | oteq3d 4354 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝐹, (𝑌 + 𝑍)〉 = 〈𝑋, 𝐹, 𝑍〉) |
49 | 48 | fveq2d 6107 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) |
50 | 35, 40, 49 | 3eqtr4rd 2655 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 Vcvv 3173 ∖ cdif 3537 ifcif 4036 {csn 4125 {cpr 4127 〈cotp 4133 ↦ cmpt 4643 ‘cfv 5804 ℩crio 6510 (class class class)co 6549 1st c1st 7057 2nd c2nd 7058 Basecbs 15695 +gcplusg 15768 0gc0g 15923 Grpcgrp 17245 -gcsg 17247 LModclmod 18686 LSpanclspn 18792 HLchlt 33655 LHypclh 34288 DVecHcdvh 35385 LCDualclcd 35893 mapdcmpd 35931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-riotaBAD 33257 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-undef 7286 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-0g 15925 df-mre 16069 df-mrc 16070 df-acs 16072 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-cntz 17573 df-oppg 17599 df-lsm 17874 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lvec 18924 df-lsatoms 33281 df-lshyp 33282 df-lcv 33324 df-lfl 33363 df-lkr 33391 df-ldual 33429 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 df-lvols 33804 df-lines 33805 df-psubsp 33807 df-pmap 33808 df-padd 34100 df-lhyp 34292 df-laut 34293 df-ldil 34408 df-ltrn 34409 df-trl 34464 df-tgrp 35049 df-tendo 35061 df-edring 35063 df-dveca 35309 df-disoa 35336 df-dvech 35386 df-dib 35446 df-dic 35480 df-dih 35536 df-doch 35655 df-djh 35702 df-lcdual 35894 df-mapd 35932 |
This theorem is referenced by: mapdh6kN 36053 |
Copyright terms: Public domain | W3C validator |