MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufacex Structured version   Visualization version   GIF version

Theorem mamufacex 20014
Description: Every solution of the equation 𝐴𝑋 = 𝐵 for matrices 𝐴 and 𝐵 is a matrix. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufacex.g 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃))
mamufacex.d 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
mamufacex (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))

Proof of Theorem mamufacex
StepHypRef Expression
1 2a1 28 . 2 (𝑍𝐶 → (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
2 mamudm.e . . . . . . . . 9 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
3 mamudm.b . . . . . . . . 9 𝐵 = (Base‘𝐸)
4 mamudm.f . . . . . . . . 9 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
5 mamudm.c . . . . . . . . 9 𝐶 = (Base‘𝐹)
6 mamudm.m . . . . . . . . 9 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
72, 3, 4, 5, 6mamudm 20013 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
87adantlr 747 . . . . . . 7 (((𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
983adant1 1072 . . . . . 6 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
109adantl 481 . . . . 5 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → dom × = (𝐵 × 𝐶))
11 simpl 472 . . . . . 6 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ¬ 𝑍𝐶)
1211intnand 953 . . . . 5 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ¬ (𝑋𝐵𝑍𝐶))
13 ndmovg 6715 . . . . 5 ((dom × = (𝐵 × 𝐶) ∧ ¬ (𝑋𝐵𝑍𝐶)) → (𝑋 × 𝑍) = ∅)
1410, 12, 13syl2anc 691 . . . 4 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → (𝑋 × 𝑍) = ∅)
15 eqeq1 2614 . . . . . 6 ((𝑋 × 𝑍) = ∅ → ((𝑋 × 𝑍) = 𝑌 ↔ ∅ = 𝑌))
16 xpfi 8116 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
17163adant2 1073 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
18 xpnz 5472 . . . . . . . . . . . . . . . . 17 ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ↔ (𝑀 × 𝑃) ≠ ∅)
1918biimpi 205 . . . . . . . . . . . . . . . 16 ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → (𝑀 × 𝑃) ≠ ∅)
20 mamufacex.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃))
21 eqid 2610 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
22 mamufacex.d . . . . . . . . . . . . . . . . 17 𝐷 = (Base‘𝐺)
2320, 21, 22elfrlmbasn0 19925 . . . . . . . . . . . . . . . 16 (((𝑀 × 𝑃) ∈ Fin ∧ (𝑀 × 𝑃) ≠ ∅) → (𝑌𝐷𝑌 ≠ ∅))
2417, 19, 23syl2an 493 . . . . . . . . . . . . . . 15 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) ∧ (𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅)) → (𝑌𝐷𝑌 ≠ ∅))
2524ex 449 . . . . . . . . . . . . . 14 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → (𝑌𝐷𝑌 ≠ ∅)))
2625com13 86 . . . . . . . . . . . . 13 (𝑌𝐷 → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → 𝑌 ≠ ∅)))
2726adantl 481 . . . . . . . . . . . 12 ((𝑅𝑉𝑌𝐷) → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → 𝑌 ≠ ∅)))
2827com12 32 . . . . . . . . . . 11 ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → ((𝑅𝑉𝑌𝐷) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → 𝑌 ≠ ∅)))
29283imp 1249 . . . . . . . . . 10 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑌 ≠ ∅)
30 eqneqall 2793 . . . . . . . . . 10 (𝑌 = ∅ → (𝑌 ≠ ∅ → 𝑍𝐶))
3129, 30syl5com 31 . . . . . . . . 9 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑌 = ∅ → 𝑍𝐶))
3231adantl 481 . . . . . . . 8 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → (𝑌 = ∅ → 𝑍𝐶))
3332com12 32 . . . . . . 7 (𝑌 = ∅ → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶))
3433eqcoms 2618 . . . . . 6 (∅ = 𝑌 → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶))
3515, 34syl6bi 242 . . . . 5 ((𝑋 × 𝑍) = ∅ → ((𝑋 × 𝑍) = 𝑌 → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶)))
3635com23 84 . . . 4 ((𝑋 × 𝑍) = ∅ → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
3714, 36mpcom 37 . . 3 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))
3837ex 449 . 2 𝑍𝐶 → (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
391, 38pm2.61i 175 1 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  c0 3874  cotp 4133   × cxp 5036  dom cdm 5038  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695   freeLMod cfrlm 19909   maMul cmmul 20008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mamu 20009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator