Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1mod0mod1 Structured version   Visualization version   GIF version

Theorem m1mod0mod1 39949
Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
m1mod0mod1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))

Proof of Theorem m1mod0mod1
StepHypRef Expression
1 recn 9905 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 npcan1 10334 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 1) + 1) = 𝐴)
32eqcomd 2616 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 = ((𝐴 − 1) + 1))
41, 3syl 17 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 = ((𝐴 − 1) + 1))
543ad2ant1 1075 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 = ((𝐴 − 1) + 1))
65adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → 𝐴 = ((𝐴 − 1) + 1))
76oveq1d 6564 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
8 simpr 476 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) mod 𝑁) = 0)
9 1mod 12564 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1093adant1 1072 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (1 mod 𝑁) = 1)
128, 11oveq12d 6567 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) = (0 + 1))
1312oveq1d 6564 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = ((0 + 1) mod 𝑁))
14 peano2rem 10227 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 − 1) ∈ ℝ)
16 1red 9934 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 ∈ ℝ)
17 simpl 472 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ)
18 0lt1 10429 . . . . . . . . . . 11 0 < 1
19 0re 9919 . . . . . . . . . . . 12 0 ∈ ℝ
20 1re 9918 . . . . . . . . . . . 12 1 ∈ ℝ
21 lttr 9993 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2219, 20, 21mp3an12 1406 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((0 < 1 ∧ 1 < 𝑁) → 0 < 𝑁))
2318, 22mpani 708 . . . . . . . . . 10 (𝑁 ∈ ℝ → (1 < 𝑁 → 0 < 𝑁))
2423imp 444 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 0 < 𝑁)
2517, 24elrpd 11745 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
26253adant1 1072 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ∈ ℝ+)
2715, 16, 263jca 1235 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
2827adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
29 modaddabs 12570 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
3028, 29syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((((𝐴 − 1) mod 𝑁) + (1 mod 𝑁)) mod 𝑁) = (((𝐴 − 1) + 1) mod 𝑁))
31 0p1e1 11009 . . . . . . . 8 (0 + 1) = 1
3231oveq1i 6559 . . . . . . 7 ((0 + 1) mod 𝑁) = (1 mod 𝑁)
3332, 9syl5eq 2656 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
34333adant1 1072 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((0 + 1) mod 𝑁) = 1)
3534adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → ((0 + 1) mod 𝑁) = 1)
3613, 30, 353eqtr3d 2652 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (((𝐴 − 1) + 1) mod 𝑁) = 1)
377, 36eqtrd 2644 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ ((𝐴 − 1) mod 𝑁) = 0) → (𝐴 mod 𝑁) = 1)
38 simpr 476 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 mod 𝑁) = 1)
3938eqcomd 2616 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → 1 = (𝐴 mod 𝑁))
4039oveq2d 6565 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → (𝐴 − 1) = (𝐴 − (𝐴 mod 𝑁)))
4140oveq1d 6564 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
42 simp1 1054 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → 𝐴 ∈ ℝ)
4342, 26modcld 12536 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℝ)
4443recnd 9947 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (𝐴 mod 𝑁) ∈ ℂ)
4544subidd 10259 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) = 0)
4645oveq1d 6564 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = (0 mod 𝑁))
47 modsubmod 12590 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐴 mod 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
4842, 43, 26, 47syl3anc 1318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 mod 𝑁) − (𝐴 mod 𝑁)) mod 𝑁) = ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁))
49 0mod 12563 . . . . . 6 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
5026, 49syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 mod 𝑁) = 0)
5146, 48, 503eqtr3d 2652 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5251adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − (𝐴 mod 𝑁)) mod 𝑁) = 0)
5341, 52eqtrd 2644 . 2 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) ∧ (𝐴 mod 𝑁) = 1) → ((𝐴 − 1) mod 𝑁) = 0)
5437, 53impbida 873 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145  +crp 11708   mod cmo 12530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531
This theorem is referenced by:  dfodd4  40109  difmodm1lt  42111
  Copyright terms: Public domain W3C validator