Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnlelln Structured version   Visualization version   GIF version

Theorem lvolnlelln 33888
 Description: A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lvolnlelln.l = (le‘𝐾)
lvolnlelln.n 𝑁 = (LLines‘𝐾)
lvolnlelln.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnlelln ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)

Proof of Theorem lvolnlelln
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1056 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → 𝑌𝑁)
2 eqid 2610 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2610 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2610 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lvolnlelln.n . . . . 5 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln2 33815 . . . 4 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
763ad2ant1 1075 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)))))
81, 7mpbid 221 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))))
9 simp11 1084 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ HL)
10 simp12 1085 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑋𝑉)
11 simp2l 1080 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (Atoms‘𝐾))
12 simp2r 1081 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (Atoms‘𝐾))
13 lvolnlelln.l . . . . . . . 8 = (le‘𝐾)
14 lvolnlelln.v . . . . . . . 8 𝑉 = (LVols‘𝐾)
1513, 3, 4, 14lvolnle3at 33886 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
169, 10, 11, 11, 12, 15syl23anc 1325 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
17 simp3r 1083 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = (𝑝(join‘𝐾)𝑞))
183, 4hlatjidm 33673 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
199, 11, 18syl2anc 691 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑝(join‘𝐾)𝑝) = 𝑝)
2019oveq1d 6564 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞) = (𝑝(join‘𝐾)𝑞))
2117, 20eqtr4d 2647 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → 𝑌 = ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞))
2221breq2d 4595 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → (𝑋 𝑌𝑋 ((𝑝(join‘𝐾)𝑝)(join‘𝐾)𝑞)))
2316, 22mtbird 314 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌)
24233exp 1256 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌)))
2524rexlimdvv 3019 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞)) → ¬ 𝑋 𝑌))
2625adantld 482 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑌 = (𝑝(join‘𝐾)𝑞))) → ¬ 𝑋 𝑌))
278, 26mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Atomscatm 33568  HLchlt 33655  LLinesclln 33795  LVolsclvol 33797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804 This theorem is referenced by:  lvolnelln  33893
 Copyright terms: Public domain W3C validator