Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli3 Structured version   Visualization version   GIF version

Theorem lvoli3 33881
Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
lvoli3.l = (le‘𝐾)
lvoli3.j = (join‘𝐾)
lvoli3.a 𝐴 = (Atoms‘𝐾)
lvoli3.p 𝑃 = (LPlanes‘𝐾)
lvoli3.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoli3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) ∈ 𝑉)

Proof of Theorem lvoli3
Dummy variables 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1058 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑋𝑃)
2 simpl3 1059 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑄𝐴)
3 simpr 476 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → ¬ 𝑄 𝑋)
4 eqidd 2611 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) = (𝑋 𝑄))
5 breq2 4587 . . . . . 6 (𝑦 = 𝑋 → (𝑟 𝑦𝑟 𝑋))
65notbid 307 . . . . 5 (𝑦 = 𝑋 → (¬ 𝑟 𝑦 ↔ ¬ 𝑟 𝑋))
7 oveq1 6556 . . . . . 6 (𝑦 = 𝑋 → (𝑦 𝑟) = (𝑋 𝑟))
87eqeq2d 2620 . . . . 5 (𝑦 = 𝑋 → ((𝑋 𝑄) = (𝑦 𝑟) ↔ (𝑋 𝑄) = (𝑋 𝑟)))
96, 8anbi12d 743 . . . 4 (𝑦 = 𝑋 → ((¬ 𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟)) ↔ (¬ 𝑟 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑟))))
10 breq1 4586 . . . . . 6 (𝑟 = 𝑄 → (𝑟 𝑋𝑄 𝑋))
1110notbid 307 . . . . 5 (𝑟 = 𝑄 → (¬ 𝑟 𝑋 ↔ ¬ 𝑄 𝑋))
12 oveq2 6557 . . . . . 6 (𝑟 = 𝑄 → (𝑋 𝑟) = (𝑋 𝑄))
1312eqeq2d 2620 . . . . 5 (𝑟 = 𝑄 → ((𝑋 𝑄) = (𝑋 𝑟) ↔ (𝑋 𝑄) = (𝑋 𝑄)))
1411, 13anbi12d 743 . . . 4 (𝑟 = 𝑄 → ((¬ 𝑟 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑟)) ↔ (¬ 𝑄 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑄))))
159, 14rspc2ev 3295 . . 3 ((𝑋𝑃𝑄𝐴 ∧ (¬ 𝑄 𝑋 ∧ (𝑋 𝑄) = (𝑋 𝑄))) → ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟)))
161, 2, 3, 4, 15syl112anc 1322 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟)))
17 simpl1 1057 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝐾 ∈ HL)
18 hllat 33668 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1917, 18syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝐾 ∈ Lat)
20 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
21 lvoli3.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
2220, 21lplnbase 33838 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
231, 22syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑋 ∈ (Base‘𝐾))
24 lvoli3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2520, 24atbase 33594 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
262, 25syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → 𝑄 ∈ (Base‘𝐾))
27 lvoli3.j . . . . 5 = (join‘𝐾)
2820, 27latjcl 16874 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑋 𝑄) ∈ (Base‘𝐾))
2919, 23, 26, 28syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) ∈ (Base‘𝐾))
30 lvoli3.l . . . 4 = (le‘𝐾)
31 lvoli3.v . . . 4 𝑉 = (LVols‘𝐾)
3220, 30, 27, 24, 21, 31islvol3 33880 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ (Base‘𝐾)) → ((𝑋 𝑄) ∈ 𝑉 ↔ ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟))))
3317, 29, 32syl2anc 691 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → ((𝑋 𝑄) ∈ 𝑉 ↔ ∃𝑦𝑃𝑟𝐴𝑟 𝑦 ∧ (𝑋 𝑄) = (𝑦 𝑟))))
3416, 33mpbird 246 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  LPlanesclpl 33796  LVolsclvol 33797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lplanes 33803  df-lvols 33804
This theorem is referenced by:  dalem9  33976  dalem39  34015
  Copyright terms: Public domain W3C validator