Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lubelss | Structured version Visualization version GIF version |
Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
lubs.b | ⊢ 𝐵 = (Base‘𝐾) |
lubs.l | ⊢ ≤ = (le‘𝐾) |
lubs.u | ⊢ 𝑈 = (lub‘𝐾) |
lubs.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
lubs.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Ref | Expression |
---|---|
lubelss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubs.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
2 | lubs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | lubs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | lubs.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
5 | biid 250 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
6 | lubs.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
7 | 2, 3, 4, 5, 6 | lubeldm 16804 | . . 3 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))))) |
8 | 1, 7 | mpbid 221 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
9 | 8 | simpld 474 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃!wreu 2898 ⊆ wss 3540 class class class wbr 4583 dom cdm 5038 ‘cfv 5804 Basecbs 15695 lecple 15775 lubclub 16765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-lub 16797 |
This theorem is referenced by: lubcl 16808 lubprop 16809 joinfval 16824 joindmss 16830 |
Copyright terms: Public domain | W3C validator |