Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnldil | Structured version Visualization version GIF version |
Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnldil.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnldil.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
ltrnldil.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnldil | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2610 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2610 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | eqid 2610 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
5 | ltrnldil.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnldil.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
7 | ltrnldil.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isltrn 34423 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹‘𝑞))(meet‘𝐾)𝑊))))) |
9 | 8 | simprbda 651 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 lecple 15775 joincjn 16767 meetcmee 16768 Atomscatm 33568 LHypclh 34288 LDilcldil 34404 LTrncltrn 34405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-ltrn 34409 |
This theorem is referenced by: ltrnlaut 34427 ltrnval1 34438 ltrncnv 34450 ltrnco 35025 |
Copyright terms: Public domain | W3C validator |