Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq2 Structured version   Visualization version   GIF version

Theorem ltrneq2 34452
Description: The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.)
Hypotheses
Ref Expression
ltrneq2.a 𝐴 = (Atoms‘𝐾)
ltrneq2.h 𝐻 = (LHyp‘𝐾)
ltrneq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrneq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝑇(𝑝)   𝐻(𝑝)   𝐾(𝑝)   𝑊(𝑝)

Proof of Theorem ltrneq2
Dummy variables 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1057 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1059 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺𝑇)
3 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
4 ltrneq2.h . . . . . . . . . . . . . . 15 𝐻 = (LHyp‘𝐾)
5 ltrneq2.t . . . . . . . . . . . . . . 15 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 34428 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
71, 2, 6syl2anc 691 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
8 simpl2 1058 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹𝑇)
9 simpr3 1062 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞𝐴)
10 eqid 2610 . . . . . . . . . . . . . . . 16 (le‘𝐾) = (le‘𝐾)
11 ltrneq2.a . . . . . . . . . . . . . . . 16 𝐴 = (Atoms‘𝐾)
1210, 11, 4, 5ltrncnvat 34445 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑞𝐴) → (𝐹𝑞) ∈ 𝐴)
131, 8, 9, 12syl3anc 1318 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ 𝐴)
143, 11atbase 33594 . . . . . . . . . . . . . 14 ((𝐹𝑞) ∈ 𝐴 → (𝐹𝑞) ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) ∈ (Base‘𝐾))
16 f1ocnvfv1 6432 . . . . . . . . . . . . 13 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ (𝐹𝑞) ∈ (Base‘𝐾)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
177, 15, 16syl2anc 691 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐹𝑞))
18 simpr2 1061 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
19 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐹𝑝) = (𝐹‘(𝐹𝑞)))
20 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝐹𝑞) → (𝐺𝑝) = (𝐺‘(𝐹𝑞)))
2119, 20eqeq12d 2625 . . . . . . . . . . . . . . . 16 (𝑝 = (𝐹𝑞) → ((𝐹𝑝) = (𝐺𝑝) ↔ (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2221rspcv 3278 . . . . . . . . . . . . . . 15 ((𝐹𝑞) ∈ 𝐴 → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞))))
2313, 18, 22sylc 63 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = (𝐺‘(𝐹𝑞)))
243, 4, 5ltrn1o 34428 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
251, 8, 24syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
263, 11atbase 33594 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
279, 26syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑞 ∈ (Base‘𝐾))
28 f1ocnvfv2 6433 . . . . . . . . . . . . . . 15 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑞)) = 𝑞)
2925, 27, 28syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑞)) = 𝑞)
3023, 29eqtr3d 2646 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐹𝑞)) = 𝑞)
3130fveq2d 6107 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺‘(𝐹𝑞))) = (𝐺𝑞))
3217, 31eqtr3d 2646 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑞) = (𝐺𝑞))
3332breq1d 4593 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)𝑥 ↔ (𝐺𝑞)(le‘𝐾)𝑥))
34 simpr1 1060 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝑥 ∈ (Base‘𝐾))
35 f1ocnvfv1 6432 . . . . . . . . . . . 12 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3625, 34, 35syl2anc 691 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹‘(𝐹𝑥)) = 𝑥)
3736breq2d 4595 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐹𝑞)(le‘𝐾)𝑥))
38 f1ocnvfv1 6432 . . . . . . . . . . . 12 ((𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺‘(𝐺𝑥)) = 𝑥)
397, 34, 38syl2anc 691 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺‘(𝐺𝑥)) = 𝑥)
4039breq2d 4595 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥)) ↔ (𝐺𝑞)(le‘𝐾)𝑥))
4133, 37, 403bitr4d 299 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → ((𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥)) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
42 simpl1l 1105 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐾 ∈ HL)
43 eqid 2610 . . . . . . . . . . . 12 (LAut‘𝐾) = (LAut‘𝐾)
444, 43, 5ltrnlaut 34427 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
451, 8, 44syl2anc 691 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐹 ∈ (LAut‘𝐾))
463, 4, 5ltrncl 34429 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
471, 8, 34, 46syl3anc 1318 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐹𝑥) ∈ (Base‘𝐾))
483, 10, 43lautcnvle 34393 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐹𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
4942, 45, 27, 47, 48syl22anc 1319 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ (𝐹𝑞)(le‘𝐾)(𝐹‘(𝐹𝑥))))
504, 43, 5ltrnlaut 34427 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺 ∈ (LAut‘𝐾))
511, 2, 50syl2anc 691 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → 𝐺 ∈ (LAut‘𝐾))
523, 4, 5ltrncl 34429 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
531, 2, 34, 52syl3anc 1318 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝐺𝑥) ∈ (Base‘𝐾))
543, 10, 43lautcnvle 34393 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝐺 ∈ (LAut‘𝐾)) ∧ (𝑞 ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾))) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5542, 51, 27, 53, 54syl22anc 1319 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐺𝑥) ↔ (𝐺𝑞)(le‘𝐾)(𝐺‘(𝐺𝑥))))
5641, 49, 553bitr4d 299 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ∧ 𝑞𝐴)) → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))
57563exp2 1277 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑥 ∈ (Base‘𝐾) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))))
5857imp 444 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝑞𝐴 → (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)))))
5958ralrimdv 2951 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥))))
60 simpl1l 1105 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
61 simpl1 1057 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
62 simpl2 1058 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐹𝑇)
63 simpr 476 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
6461, 62, 63, 46syl3anc 1318 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐹𝑥) ∈ (Base‘𝐾))
65 simpl3 1059 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐺𝑇)
6661, 65, 63, 52syl3anc 1318 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
673, 10, 11hlateq 33703 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑥) ∈ (Base‘𝐾) ∧ (𝐺𝑥) ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6860, 64, 66, 67syl3anc 1318 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑞𝐴 (𝑞(le‘𝐾)(𝐹𝑥) ↔ 𝑞(le‘𝐾)(𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
6959, 68sylibd 228 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → (𝐹𝑥) = (𝐺𝑥)))
7069ralrimdva 2952 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
71243adant3 1074 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
72 f1ofn 6051 . . . . 5 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹 Fn (Base‘𝐾))
7371, 72syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹 Fn (Base‘𝐾))
7463adant2 1073 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
75 f1ofn 6051 . . . . 5 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺 Fn (Base‘𝐾))
7674, 75syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺 Fn (Base‘𝐾))
77 eqfnfv 6219 . . . 4 ((𝐹 Fn (Base‘𝐾) ∧ 𝐺 Fn (Base‘𝐾)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7873, 76, 77syl2anc 691 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (Base‘𝐾)(𝐹𝑥) = (𝐺𝑥)))
7970, 78sylibrd 248 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) → 𝐹 = 𝐺))
80 fveq1 6102 . . 3 (𝐹 = 𝐺 → (𝐹𝑝) = (𝐺𝑝))
8180ralrimivw 2950 . 2 (𝐹 = 𝐺 → ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝))
8279, 81impbid1 214 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  ccnv 5037   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  Basecbs 15695  lecple 15775  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LAutclaut 34289  LTrncltrn 34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409
This theorem is referenced by:  ltrneq  34453  cdlemd  34512
  Copyright terms: Public domain W3C validator