MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnsym2 Structured version   Visualization version   GIF version

Theorem ltnsym2 10015
Description: 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ltnsym2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))

Proof of Theorem ltnsym2
StepHypRef Expression
1 ltso 9997 . 2 < Or ℝ
2 so2nr 4983 . 2 (( < Or ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
31, 2mpan 702 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 1977   class class class wbr 4583   Or wor 4958  cr 9814   < clt 9953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958
This theorem is referenced by:  lgsquadlem3  24907  sgnneg  29929
  Copyright terms: Public domain W3C validator